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Abstract: This work regards oil flow in petroleum reservoirs. It is an analysis that 
aims the study of monophasic oil flow in porous media through the Diffusivity 
Equation’s analytical solution for a radial, transient flow when varying reservoir and 
fluid parameters. This solution is especially important for preliminaries studies of 
petroleum reservoir regarding its economic and technical production viability for a 
qualitative understanding of the flow in the reservoir. In addition, a numerical model 
based on the Finite Difference Method (FDM) is implemented to solve the radial flow 
and relax the simplifying hypothesis used to solve the governing equation analytically. 
The numerical, more realistic, solution is compared to the analytical solution and the 
effects of the simplifying hypotheses of the model are further discussed. 
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1. Introduction 

Recent oil barrel values drop to low prices demanded more efficient and reliable 
viability studies. It is possible to minimize risks and avoid bad capital investment 
through preliminary studies and a better understanding of how each fluid and 
geological variable influences the flow. 

The paper begins with of the background theory used to study flow in porous 
media, where the Continuity Equation, equations of state and Darcy’s Law are briefly 
discussed. By imposing the correct boundary conditions, these equations are 
combined to obtain the Diffusivity Equation, which is solved analytically to obtain an 
equation capable of describing pressure values at every point and time of the reservoir 
using geological and fluid information. Following that, the FDM model equations’ are 
presented and its implementation is further discussed. In order to accomplish this, 
Mathematica Wolfram [1] computer language is chosen as the computational tool. 

The numerical model is especially useful to study real geometry and parameters 
cases when obtaining an analytical equation without simplifying assumptions is not 
possible. 

◆Research Paper◆ 
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2. Deriving the Diffusivity Equation 

The Diffusivity Equation’s solution describes the pressure behavior with respect 
to the distance to the wellbore’s center and time passed since the start of the 
production, and it is used in analysis well test data [2]. It is obtained by combining 
three sets of equations: one that describes the linear momentum conservation (Darcy’s 
Law), one that describes the mass conservation (Continuity Equation) and equations 
that relate state variables, such as volume, pressure, temperature and mass (equations 
of state). The following topics are dedicated to introduce these equations, as well as 
the hypotheses behind their application. 

 
Darcy’s Law: the Conservation of Linear Momentum Equation. Henry Darcy 

first wrote Darcy’s Law in 1856. It is an equation that describes the flow of fluid 
through porous media using the concept of the linear momentum conservation [3]. It 
was obtained empirically when Darcy first wrote this equation, but later it was derived 
from the Navier-Stokes equation for stationary, creeping and incompressible flow [4]. 
Darcy’s Law is widely used in reservoir engineering for modeling flow in porous 
media, and those who intend to use it should understand its hypotheses: Darcy’s Law 
is valid for incompressible, laminar flow, negligible inertial effects, and the viscous 
part of the strength tensor behaves according to Newton’s Second Law for fluids [4]. 

   
Φ

 -
k d

v
dl




             (1)  

where γ denotes the fluid’s specific weight [ML-2T-1]; μ denote the fluid’s viscosity 
[ML-1T-1]; k denotes the porous medium’s intrinsic permeability [L2]; v is the fluid’s 
instantaneous velocity [LT-1]; l is the direction of the fluid’s trajectory [L];  denotes 
the fluid flow potential [L]. The fluid potential is the negative integral of the force 
over the path taken by an infinitesimally small volume of fluid when it moves from a 
reference location to the point under consideration [4]. It is a measure of the specific 
potential energy stored within the fluid. Thus,  

  Φ   
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p

p
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Z Z   

                         (2) 

where p denotes the pressure [ML-1T2]; Z denotes the height with respect to a chosen 
datum [L] and the subindex “o” denotes reference values for the variables that it 
follows. 

The derivative of the fluid potential with respect to the path the fluid takes is: 

Φ 1d dp dZ

dl dl dl
 


         (3) 

Continuity Equation: The Mass Conversation Equation. The Continuity 
Equation states physically that the variation of fluid mass in a control volume within 
time is equal to the balance of fluid that flow inward and outwards of the volume plus 
any source within that volume, or diminished any sink that might be present inside the 
volume. The source/sink flow term is useful to model internal boundary conditions of 
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specified flow rates (i.e. injection or removal of hydrocarbonates through a well). The 
Continuity Equation is written as it follows[5]: 

    
 sctd
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
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






        (4) 

where ρ denotes the fluid’s specific mass [ML-3]; Vb is the bulk volume [L3]; ϕ is the 
medium’s porosity [non-dimensional]; t is the time [T]; qsc [L

3T-1] is the source/sink 
rate term  and the sub-index std stands for variables at standard pressure and 
temperature conditions. 

 
Equations of State. Equations of state are any constitutive laws that relate 

pressure, temperature, volume and mass for a given fluid. One much-known example 
of an equation of state is the Ideal Gas Law[3]. 

The importance of equations of state on the model is that they can be used to 
replace variables on the Diffusivity Equation by variables usually measured on field 
evaluations and variables that are easier to work with. Two important equations are 
going to be used for this purpose, fluid compressibility equation and rock formation 
compressibility equation, both specified for isothermal analysis. The fluid 
compressibility equation is defined as the percentage of the total volume that the 
volume variation rate with the pressure represents: 

 
1 V

c
V p

 
    

           (5) 

where c is the fluid’s isothermal compressibility [M-1LT-2] and V is the volume [L3]. 
One may write Equation (5) on the form that is more useful to the current purpose 

using the definition of specific mass: 
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The Equation (6) may also be used to write relations between specific mass and 
pressure spatial partial derivatives and specific mass and pressure time partial 
derivatives. These equations are: 
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and 
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The other equation of state, the rock formation compressibility, is the percentage 
of the rock porosity that the variation of porosity with respect to the pressure 
represents [3]:  
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         (9) 

Mathematical manipulations may as well allow Equation (9) to be written on a 
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way that may be applied to the model: 

 
1

f

p
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        (10) 

The sum of the two compressibilities showed on the text is called the total 
compressibility: 

  t fc c c             (11) 

It is also useful to use the defined compressibilities to obtain equations that allow 
to calculate porosity and oil formation volume factor for different times since the 
beginning of the production [5]: 
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where B is the oil formation volume factor [non-dimensional]. 
 
The Diffusivity Equation and its Solution. Equation (4) can be fully expanded 

with respect to the space variables: 
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where the subindexes x, y and z denotes the Cartesian direction on in the space [L]. 
The source/sink term is not necessary to solve Equation (14) analytically, because 

it is redundant after applying boundary conditions. Therefore it may be considered 
zero. Rewriting Equation (14) into cylindrical coordinates: 
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  (15) 

where the sub-indexes r,  and z are the cylindrical grid directions, r is the radial 
direction variable [L],  is the angular direction variable [non-dimensional] and z is 
the depth direction variable [L]. 

Some important hypotheses are assumed in order to obtain the analytical solution. 
It is assumed that the rock is homogeneous and isotropic, the fluid’s viscosity is 
constant, fluid and rock compressibilities are small and constant, the fluid is 
isothermal and pressure gradients are small. It is also assumed that the flow is radial 
(i.e. no vertical pressure gradients) and transient (the reservoir behaves as if it is 
infinite and boundary conditions are not felt immediately along the reservoir 
extension. Equation (15) becomes: 
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where the rock and fluid parameters were replaced by the diffusivity constant [2]: 
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It is necessary to specify properly three boundary conditions to solve Equation 
(16) [2]: 
 It is assumed that, at t = 0, the pressure inside the reservoir is constant p(r,0) = pt=0, 

r>0. 
 It is assumed that if a point sufficiently far is taken, its pressure is equal to the 

initial pressure lim[p(r,t)]r→∞= pt=0.  
 It is assumed that the flow rate inside the wellbore is constant qw=cte. 

Furthermore, the last boundary condition may be written as it follows using 
Darcy’s Equation and taking its limit with r→∞: 
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where qw is the well rate and h is the reservoir width [L3T-1]. 
One may find the pressure equation along the reservoir [3] using these boundary 

conditions and solving Equation (16): 
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where Ei(X) is the integral exponential function, defined as follows [3]: 
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Finite Difference Method Model. There are three most commonly used 
numerical methods for reservoir simulation. These are Finite Element Method, Finite 
Difference Method and the Finite Volume Method [6]. Each of them has its advantages 
and disadvantages. The chosen method for this paper is the Finite Difference Method, 
which is the most traditional numerical method on fluid flow studies and its pros and 
cons are summarized in Table 1. 

The FDM method is chosen to be implicit with a radial and geometrically 
growing grid. The grid grows following the rule: 

 1i lg ir r            (21) 

where lg is the mesh growth factor [non-dimensional]. 
In order to keep the discrete and continuous form of the Darcy Equation, the 

borders of the cells must be positioned according to the formula:  
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Table 1. Advantages and Disadvantages of the Finite Difference Method. 
Finite Difference Method[6] 

Advantages Disadvantages 
Easy to write codes; Easy 3D 

extension; Good compatibility of physical 
aspects of fluid flow in porous medium 

Highly dependent on the mesh; 
Difficult to implement for complicated 
geometry; big numerical dispersion 
associated with truncation; poor precision 
for a heterogeneous medium with high 
capillary pressure variations. 
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        (22) 

 
The FDM formulation used here is developed in [5]. The implicit in time 

formulation is used, since the mesh is radial and it grows geometrically. The final 
equation that describes the method is: 
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Each of these coefficients is a combination of transmissibilities through the face 
of two neighboring cell. The letters stand for the position of the cells in relation to the 
cell in analysis: above, below, north, west, east, south and center. Each of these 
coefficients shows how the pressure of cell itself and the pressure from neighboring 
cells are changing the pressure calculated.  
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The transmissibility is defined as: 

Table 2. Expressions applied to Equation (31) to calculate the geometrical factor G [7]. 
Grid types and 
flow direction 
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where G is a geometric factor, calculated with the expressions presented in Table 2. 
Equation (32) shows the independent terms vector from the linear system. 

Through this term, it is possible to implement internal boundary conditions and to 
relax gravitational hypothesis. 
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Equation (33) shows the storage term involving changes in porosity and on the oil 
formation volume factor. This term accounts for the total compressibility, and it 
represents an “inertia” to pressure changes. The gravitational term is written as: 
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The term expressed in Equation (34) term takes into account the influence of the 

hydraulic load of the neighboring cells, similarly to the Equation (23). The 
coefficients multiplying pressures are defined as following: 
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3. Methodology 

Plots of the pressure variation from the initial pressure within a distance from the 
wellbore and time from the production beginning were drawn through the usage of the 
Mathematica Wolfram Software language. The plots will only relate the variation of 
pressure to time or distance individually, while the other variable is kept constant. It is 
useful to define the pressure variation in order to accomplish that: 
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It is necessary a brief discussion of what this new parameter represents in terms 
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of oil production and why it is important.  
Higher pressure variations within the time for a fixed point for two similar 

reservoirs implies that the one with higher pressure variation has less energy stored 
for oil elevation, which is undesirable economically and technically for production. 
Hence, it is desirable that the reservoir parameters generate smaller pressure drops 
within the time from a production point of view so that it is possible to maintain the 
oil production. 

Naturally, it is desirable that the reservoir shows smaller pressure variation and 
pressure gradient values on points further away from the well for a fixed time. 

Assuming monophasic flow with no fluid injection through the reservoir limits, 
the flow regime will evolve to pseudo-permanent, since there is no fluid influx to the 
reservoir. Therefore, pressure drops will not be balanced through the reservoir limits. 
The flow rate through the wellbore is assumed constant, therefore bigger pressure 
variations means there will be less fluid volume produced. 

The standard values of reservoir parameters are listed in the Table 3. 
 

Table 3. Reservoir parameters original values [3]. 
Parameter Value Unity 

Permeability 9,87x10-14 m2 

Viscosity 
3x10-3 

 
Pa.s 

Production flow rate 35  m3/day 

Rock formation depth 4  m 

 
Porosity 

0,2  Non-dimensional 

 
Compressibility 

 

1,33x10-9 
Pa-1 

 
Well radius 

0,1  m 

 

The results are displayed by plotting the pressure against either distance from the 
wellbore center or time, keeping the other variable constant. The chosen fixed 
distance and time values are 300m and 30 days. A set of five plots were generated to 
study each parameter with five different parameters values ranging from usual values 
found on the field to discuss the influence that each parameter bears on the behavior 
of the flow.  

Following, Equations (23) to (41) are implemented in Mathematica and the FDM 
model is validated by comparison with the analytical solution curves. The fixed values 
of distance and time are set to t = 10 days and r = 300 meters. The initial pressure is 
set to zero in order to obtain the pressure variation instead of the pressure in the 
reservoir, and the final answer is the negative of the output generated by the method. 
The analytical model is used to obtain the distance from the center of the wellbore for 
which the pressure variation is less than 0.1kPa to simulate and infinite dimension 
reservoir (a reservoir in transient flow conditions). The extension of the grid goes 
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from the well radius until that radius and the last cells are set to remain at the initial 
pressure conditions all the time. The constant rate well is modeled through the 
source/sink term in Equation (32). The grid generated has (nθ nr nz)= (900 4 4) 
cells, and nt= 200 (∆t = 0.05 days) . The values of porosity and oil formation volume 
factor are updated by applying Equations (12) and (13). The viscosity is not updated 
at the end of every time-step, since it’s values are reasonably constant with pressure 
variations for oils with no gas dissolved [5]. 

After the model validation, the hypothesis regarding no gravitational effects is 
relaxed and the analytical solution is compared with the new solution. 

The next step is to keep hypothesis regarding no gravitational effects and to 
impose a pseudorandomly distributed permeability through the mesh and compare the 
new solution to the analytical one again. 

At the end, gravitational effects and permeability hypothesis are simultaneously 
relaxed (using the same permeability values generated) and the final solution is 
compared to the analytical solution. 

4. Results 

Figs. 1 and 2 are plotted following the procedure listed in the methodology 
section with respect to the analytical solution of the Diffusivity Equation. Figure 1 
brings the pressure variation plotted against distance and fixed in time, and Figure 2 
plots pressure variation against time for a fixed distance to the wellbore. 

Fig. 1a shows the original solution within time and plot 1b plots the original 
solution within distance. At the beginning, the entire reservoir is at the same pressure  
pt=0. When the production starts, the pressure begins to fall. At first, the pressure 
measured at a point sufficiently far from the center of the wellbore (which might be 
relatively close to the wellbore) will remain with the initial pressure for a certain time, 
without the influence of the production. The pressure on that point starts to drop after 
a sufficiently long time. The boundary conditions do not affect the entire fluid mass 
immediately; this is a particular quality of the transient flow regime. The model will 
show null pressure variation on that point if not enough time is waited. As the 
boundary conditions travel through the reservoir, the pressure variation starts to 
increase and it is bigger closer to the wellbore. The radius variation is more significant 
on the values that the pressure variation will assume, since it appears with a higher 
exponent than the time. This explains the basic behavior of the pressure variation. 

Fig. 1b and Fig. 2b show the solutions for different permeability values. The 
bigger the fluid permeability, the lower it will take to move the fluid to the surface. 
This results in in small pressure variations, and it will be possible to keep the flow for 
a longer period. In addition, the boundary conditions imposed will travel to the limits 
of the reservoir faster, which implies higher pressure variation values at the beginning 
when comparing to reservoirs with smaller permeability. Moreover, the reservoir will 
change its flow regime faster. Fig. 1b shows that the pressure variation grows faster 
for higher permeability values at the beginning of the production, and reach smaller 
values for longer periods. Fig. 2b shows that the pressure variation is much smaller 
for higher permeability values along the reservoir extension for a fixed time. 

Fig. 1c and 2c show the solutions with different viscosity values. The fluid 
viscosity has the opposite effect of the permeability of the pressure variation. The 



ISSN:2372-0743 print 
ISSN:2373-2989 on line 

International Journal of Ground Sediment & Water Vol. 05
2017

	

- 186 - 

flow in the direction of the well demands more energy for highly viscous fluids 
because of the increase of the energy lost due to friction. That means the pressure 
variation will be higher for viscous fluids, supposing constant flow rates. At the 
beginning of the production, however, the pressure variation will be smaller for highly 
viscous fluids. That happens because the pressure drop due to the production start 
propagates slower to the reservoir extension. Fig. 1c shows that the pressure variation 
increases faster for more viscous fluids at the beginning of the production, and it is 
soon exceeded by the curves of less viscous fluids. Fig. 2c shows that less viscous 
fluids cause smaller pressure variation values along the reservoir extension for a fixed 
time. 

Fig. 1d and 2d show the solutions with different rock formation depth values. 
Deeper rock formations have bigger drained areas. In the case of vertical wells, it is 
necessary less energy to make a bigger fluid volume flow inwards the well and the 
pressure variation will be smaller. It is a good solution to build horizontal wells when 
dealing with shallow rock formations, because the draining area will be larger, and a 
smaller number of the well will be necessary for a feasible production. Pressure 
Variation is proportional to the inverse of rock formation depth. Plotting both 
variables on the same plane would result in a hyperbole. Fig. 1d shows that the 
pressure variation increases fast for shallower rock formations within time and much 
slower and smoother for deeper formations. Fig. 2d shows that deeper rock formation 
depth implies better results for the pressure variation along the reservoir extension. 

Fig. 1e and Fig. 2e show the solution for different porosity values. It is assumed 
that the increase of porosity is homogeneously distributed in the rock formation for 
this analysis. Pores that create vertical paths are irrelevant to the radial flow, whereas 
pores that create continuous radial paths increases the flow easiness. This means that 
the increase of pores has a similar effect to that of the increase of the permeability, but 
with a smaller intensity. Therefore, a porosity increase implies a pressure variation 
decrease. Fig. 1e shows that the pressure variation in time is smaller for reservoirs that 
are more porous, and Fig. 2e shows that the pressure variation is also smaller for more 
porous reservoirs within distance since it is easier to move oil from any point of the 
reservoir to the wellbore. 

Fig. 1f and Fig. 2f show the solution or different compressibility values. The total 
compressibility can be regarded as a measure of the amount of energy that the rock 
and fluid may be stored in the form of potential energy through deformation. The 
pressure drop travels along the reservoir and decompresses both fluid and rock when 
the production starts. The fluid and the rock expand and mitigate the pressure drop 
during the decompression. In addition, the high value of compressibility means there 
will be more energy for the fluid elevation stored in the reservoir, which makes the 
pressure variation smaller. Fig. 1f shows that, for smaller compressibility values, the 
pressure variation is bigger, which implies that more energy is spent. Fig 2f shows 
that the pressure variation along the extension of the reservoir is bigger for smaller 
compressibilities; therefore, more energy is spent to move the fluid from a certain 
point in the reservoir to the wellbore. 
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(a)           (b) 

   
(c)          (d) 

    
(e)          (f) 

Fig. 1. Pressure variation within time for r = 300 m; (a) Original solution; (b) different 
permeability values; (c) different viscosity values; (d) different rock depth values; (e) 

different porosity values; (f) different compressibility values. 
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(a)           (b) 

  
(c)          (d) 

 
(e)          (f) 

Fig. 2. Pressure variation within distance for t=30 days; (a) Original solution; (b) 
different permeability values; (c) different viscosity values; (d) different rock depth 

values; (e) different porosity values; (f) different compressibility values. 
 

In summary, the permeability, higher values of rock formation depth, porosity, 
and total compressibility favors the production, while the viscosity disfavors it. 
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5. FDM Validation 

 Fig. 3, 4, 5, 6 of the numerical model are generated, continuing the steps listed in 
the methodology section. Fig. 3 is used for the validation of the model, while Fig. 4 
and 5 are used to relaxed gravitational and permeability hypothesis individually and 
Fig. 6 shows the results when both hypotheses are relaxed.  

The value of the radius that accomplishes the required is around 2500m is found 
using the procedure described in the methodology section to find the distance where 
pressure variation is smaller than 0.1kPa. However, the external radius adopted was 
3000m, as it was possible to simulate a bigger radius without much increase in 
computational cost.  

It is clear that the numerical model estimates the values of the analytical solution 
with minimal errors from Fig. 3a and Fig. 3b. Indeed, if the biggest absolute deviation 
is taken from the two cases and each of them is divided by the respective average 
value of the analytical solution on the intervals calculated, the ratios are 4.4% e 1.5%. 
In reality, the biggest absolute deviations occur on plot regions where the actual 
analytical pressure variation values are much bigger than the average pressure 
variation value; hence, the two percentages values obtained are actually 
overestimation of the deviation.  

Higher oscillation on the numerical solution is observed next to the wellbore. 
That may be justified by the high-pressure variation gradient values next to the well, 
which causes some numerical instability. Overall, the numerical approximation is 
good. 

The numerical solution is slightly displaced when relaxing the gravitation 
hypothesis as can be seen in Fig. 4a and Fig. 4b. 

However, there is still no vertical flow, since the rock formation is horizontal. The 
displacement is caused because now, when specifying the initial condition on the 
program input, it is the initial fluid flow potential that is being specified, but the 
calculations are still aiming to obtain the pressure conditions. The pressure must be 
lesser than when calculated for no gravitational effects as both pressure and height 
values are positive and the fluid flow potential is the value that the pressure was 
supposed to be. The pressure variation is obtained by taking the negative values of the 
solution as it was stated in the methodology section. In other words, the pressure 
variation must be bigger because the pressure obtained is smaller than the previous 
value. 

Fig. 5a and Fig. 5b are plotted by returning the gravitation hypothesis and 
imposing a pseudorandomly distributed permeability. 

This hypothesis, so far, is shown to be the one that most introduces error to the 
analytical model hypothesis. However, that depends on how other reservoir natural 
characteristics are, of course. For example, if the rock formation had greatly varying 
height variations, it is possible that the gravitational effect would play a more 
important role. Nevertheless, in this case, the analytical model is shown to be 
ineffective for reasonable estimations of the pressure variation values of an 
anisotropic and heterogeneous permeability distribution. On the other side, the 
qualitative behavior is still the same. 
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(a)        (b) 
 

Fig. 3. Validation of the numerical model. (a) validation for the fixed in distance 
solution (r=300m); (b) Validation for the fixed in time solution (t= 10 days). 

 
 

 
(a)        (b) 

Fig. 4. Relaxing gravitation hypothesis. (a) pressure variation plotted against time; 
(b) pressure variation plotted against distance. 

 
 

 
(a)        (b) 

Fig. 5. Relaxing permeability hypothesis; (a) pressure variation plotted against 
time; (b) pressure variation plotted against distance. 
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One gets Fig. 6a and Fig. 6b by relaxing both hypotheses of the previous two 
sections simultaneously. 

The behavior of the numerical solution has changed further than the superposition 
of effects of the two relaxations. This is a consequence of the non-linearity of the 
Diffusivity Equation. 

 
 

 
(a)        (b) 

Fig. 6. Relaxing both gravitation and permeability hypothesis; (a) pressure 
variation plotted against time; (b) pressure variation plotted against distance. 

 

6. Conclusions 

The pressure variation analysis within the various parameters from the solution of 
Diffusivity Equation for a radial, transient flow is one of the starting points of the 
viability study. 

It is concluded that rock thickness, intrinsic permeability, reservoir total 
compressibility, and porosity mitigates the energy demanded to elevate the oil, while 
viscosity enhances the energy loss by analyzing each of the parameters present in the 
analytical solution of the Equation (16). The explanation for why each of these 
variables causes the effects listed follows the curves for each individual parameter 
results. 

The numerical model was successful validated, and its results showed reasonably 
low errors. It is clear that the permeability hypothesis showed a greater influence on 
the numerical solution deviation from the analytical solution when comparing the 
results of relaxing gravitational and permeability hypothesis individually. The curve 
deviation obtained cannot be seen as a superposition of effects of both effects 
individually when both hypotheses were relaxed simultaneously, because of the 
equation’s non-linear behavior.  

In addition, it is possible to conclude that the analytical model might not represent 
correctly a more complex reservoir; however, it can be used to qualitatively study the 
behavior of oil reservoirs.  
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