Research paper

DOI: 10.5281/zenodo.14724737

Impact of Mineral Processing and other Industries on Groundwater Quality: A Case Study of Baldia Town, Karachi, Pakistan

Muhammad Tajuddin¹, Adnan Khan^{1*}, Syed Wasi Haider²

¹Department of Geology, University of Karachi, Sindh, Pakistan ²Institute of Space Science & Technology, University of Karachi, Sindh, Pakistan * Corresponding author Email: <u>adkhan@uok.edu.pk</u>

Abstract: The aim of the present study is to assess the groundwater quality of western parts of Baldia Town, Karachi, for drinking purpose. For this purpose, groundwater samples (n = 25)were collected from boring wells at various depths (55–250 feet) for physiochemical analysis. Quantitative assessment was carried out including physical (temperature, pH, Eh, TDS, hardness) and chemical parameters (Na+, K+, Ca2+, Mg,2+ Fe2+, Pb2+, Cr5+, Cu2+, Mn2+, Co,2+ Cl-, NO₃-, SO_42 -, HCO_3 -). Major cations varied in the order of Na+ > Ca2+ > Mg2+ > K+ while anions in the order of $Cl > SO_42 - > HCO_3 - > NO_3$. The concentration of trace elements declined in the order of Ni2+ > Fe2+ > Cr5+ > Cu2+ > Mn2+ > Pb2+ > Co2+. The analytical results revealed the occurrence of extremely high TDS (Range: 2070 to 6650 mg/l; Mean: 3768 mg/l) and hardness content (Range: 1000 to 3200 mg/l; mean: 1900 mg/l). The pH varied between 6.49 and 7.31 (mean: 6.86), while Eh span between +199 to +473 mV (mean +267 mV). Temperature of the collected groundwater samples was 27±1°C indicating alluvial aquifers. About 52% wells are found to be microbially contaminated. Furthermore, all major ions exceeded the permissible limits set by WHO for drinking water. The mean concentrations of all minor/trace elements were within the permissible limits set by the WHO. The calculated Water Quality Index (WQI = 109) indicated that the groundwater in the study area is unfit for drinking, irrigation, or industrial purposes.

Keywords: Physicochemical parameters, Groundwater quality, Water quality index, Karachi.

Introduction

Water is a fundamental component of the ecosystem and serves as a renewable natural resource vital for the socio-economic development of any nation (Chima et al., 2007). It exists on Earth in the forms of surface water and groundwater (Sarada and Bhushanavathi, 2015). The availability and quality of water have become significant global challenges in recent times, impacting numerous countries worldwide. The quality of water used for domestic and agricultural purposes directly affects human health and livestock. The rapid population growth, urbanization, industrialization, and increased use of chemicals have led to escalating water pollution (Knudsen and Slooff, 1992). Groundwater is commonly utilized globally for domestic consumption, industrial processes, and irrigation (Ramakrishnaiah et al., 2009). Various factors, such as the geological characteristics of an area, geochemical processes, and land use patterns, influence groundwater chemistry (Saha and Kumar, 2006). However, modern agricultural practices, urbanization, and industrialization have contributed to the alarming situation of water pollution, resulting in alterations to the physicochemical properties of water bodies and environmental contamination. Therefore, it is crucial to analyze the quality of the water in order to maintain and improve the natural ecosystem (Dohare et al., 2014).

The escalating pollution of groundwater has become a significant cause for concern due to its increasing use for both human consumption and industrial activities. The World Health Organization (WHO, 1993) has reported that approximately 80% of human diseases are caused by consuming contaminated or toxic water, leading to various waterborne illnesses. Consequently, the establishment of water quality standards is crucial to determining the suitability of groundwater for its intended purposes.

Karachi, the largest and most densely populated city in Pakistan with a population exceeding 30 million, has been grappling with a chronic shortage of municipally supplied water for many decades. As a result, the residents of Karachi have rapidly turned to groundwater as an alternative for drinking and other domestic uses. The focus of present study is the Moach Goth and its surrounding area that is part of Baldia Town (industrial zone housing numerous minerals processing plants and warehouses). Mineral and chemical processing plants in study area consume a significant amount of water (both surface and ground) for mineral processing, leading to the leaching of various elements into the ground resulting in groundwater contamination. This contamination poses a high risk to the surrounding population that can become a prevalent issue, which can cause various ailments among the affected population. Despite such calamitous vulnerability, no comprehensive investigation has been carried out so far to assess the groundwater quality and potential sources of contamination in this industrial part of Karachi. Therefore, the present study is aimed at assessment of groundwater quality using the water quality index (WQI) and statistically analyzing the factors influencing the chemistry of groundwater in the study area using principle component analysis.

Study Area

The study area encompasses Moach Goth, Naval Colony and Gulshan-e-Mazdoor, located in the Baldia Town of the Kemari district, situated in the western part of Karachi, Sindh. Moach Goth primarily serves as a residential area, yet it hosts numerous mineral processing plants and warehouses. Conversely, Gulshan-e-Mazdoor and Naval Colony are entirely residential neighborhoods. The Hub River lies approximately 8 kilometers northwest of the study area. sewage system of Moach Goth is in dire circumstances and getting worsen every day. Pipelines for sewage have been damaged in the study area. Sewage water comes up and spills out in the study area when the drains are clogged. Roads suffer severe damage (cracks or pitting) or are consequently completely washed away. Majority of the paved sections of the roads are washed out as a result of poor maintenance. it becomes more aggravated during the rainy season where huge amount of water is infiltrating through unpaved surfaces and reaches the shallow aquifers.

Material and Methods

Sample Collection

Groundwater samples (25) were collected from boring wells at a depth range of 55-250 feet for physiochemical analysis from study area. The deepest well reached a depth of 250 feet, while the shallowest is occurring at 55 feet. To ensure representative samples, groundwater was electrically pumped for a duration of 2-3 minutes. Plastic bottles with a capacity of 1 liter were utilized for sample collection, while smaller bottles (200 ml) added with boric acid were specifically used for nitrate analysis to prevent further reactions. Prior to collection, the bottles were washed thoroughly and rinsed properly with distilled water, and finally with groundwater from the sampling site. Locations of the boreholes were determined using the Global Positioning System (GPS) and marked on a Google image (Fig.1).

Fig.1: Sample location sites marked on the map of study area.

Groundwater Analysis

All samples were analyzed for physicochemical parameters in the laboratory of Department of Geology, University of Karachi. The pH, EC and total dissolved solids (TDS) of the collected samples were measured using specific instruments: a glass electrode pH meter (ADWA AD 111) for pH measurement and an EC meter (ADWA AD 330) for EC and TDS measurement. Sodium and potassium concentrations were determined using a flame photometer (model: PFP-7, JENWAY, UK). Bicarbonate and chloride ions were measured using argentometric titration. The standard EDTA titration method (1992) was employed to determine calcium and total hardness. Magnesium content was estimated by calculating the difference between hardness and calcium using a standard formula. The sulfate content was determined through a gravimetric method. Nitrate was measured using the Cadmium Reduction Method (HACH-8171) through a spectrophotometer after groundwater samples were preserved in boric acid to stop any reactions that might have reduced the nitrate content. Furthermore, the analysis of chromium (Cr), cobalt (Co), copper (Cu), manganese (Mn), iron (Fe), and lead (Pb) was carried out using an atomic absorption spectrometer in flame mode (Model No. Analyst 400, Perkin Elmer). Microbial activity was semi/quantitatively analyzed by using a microbial testing kit with color change from transparent to black grading from negative to very high.

Determination of Water Quality Index (WQI)

According to Yisa and Jimoh (2010), the Water Quality Index (WQI) is a highly efficient means of conveying information about water quality to both concerned citizens and policy makers. Weighted arithmetic index method of WQI proposed by Brown et al (1970) was used to evaluate the groundwater quality status of study area. Physicochemical parameters including pH, TDS, hardness and major cations (Na, Ca, Mg, and K) and anions (Cl, HCO₃, SO₄ and NO₃) were used to calculate WQI of groundwater in study area. WQI is calculated by using following formula.

$WQI=\sum QnWn/\sum Wn$

Where, Qn is the quality rating of nth water quality parameter. Wn is the unit weight of nth water quality parameter.

Where, Vn is the actual amount of nth parameter present. Vi is the ideal value of the parameter, Vi = 0, except for pH (Vi = 7). Vs is the WHO standard permissible value for the nth water quality parameter.

Unit weight (Wn) is calculated using the formula

Where, k is the constant of proportionality, and it is calculated using the equation

Results and Discussion

Physical Parameters

The field observations indicate that the water samples were colorless. The field tests and lab measurements of pH, TDS, major Cations, major Anions and depth of the water samples, are presented in Table 2. Variations in pH values have an indirect impact on groundwater quality, including the solubility of heavy metal ions and microbial growth (Mohamadi et al., 2011). The pH of collected samples ranges Between 6.49 - 7.31 with a mean of 6.86. Thus, the pH of groundwater is within the WHO permissible range of 6.5 - 8.5. One of the most important factors that can affect a variety of changes in water, including bacterial growth, color, taste, odor, and corrosion issues (Jones et al., 1999; WHO, 2008), is the temperature of the groundwater. Groundwater temperature varied in the range of 26.6-27.6°C mean temperatures of 27.1°C reported in study area. The degree of pollution is indicated by the turbidity of the water (Momba et al., 2006). Water turbidity depends on the suspended load, which includes organic particles, bacterio-plankton units, colloids, air bubbles, and other non-uniformities in the water samples (WHO 2008). Turbidity of collected groundwater samples ranges between 0-1.35 NTU with mean value of 0.45 NTU. All samples were found under permissible limit <5 NTU by WHO (2011). About 52% samples is showing positive response for Microbial Activity.

The TDS content in the collected groundwater samples ranges from 2070 to 6650 mg/l, with an average of 3768 mg/l. All the samples have high TDS content above guideline values set by the Pakistan Environmental Protection Agency (1000 mg/L) and the World Health Organization (500 mg/L) for drinking water. The TDS content is primarily composed of inorganic salts, including bicarbonates, chlorides, and sulphates. The significant variation in TDS levels may be mainly attributed to both human activities and natural geochemical processes (Jeevanandam et al., 2007) that are prevalent in the region.

Classification	TDS in mg/l	No. of Samples
Non – saline	< 1000	0
Slightly saline	1000 - 3000	8
Moderately saline	3000 - 10000	17
Very saline	> 10000	0

Table 1. TDS classification of study area groundwater (after Prakash and Soma)

The redox potential of collected samples varies from +199 to +267 mV with a mean of +473 mV. All samples showed positive Eh suggesting the recent recharge. Extremely variable content of hardness is reported (range: 1000–3200 mg/L, mean: 1900 mg/L). The hardness of all samples in the study area is above the WHO permissible limit (500 mg/L) for drinking purposes. Hard water can cause a variety of health issues, including artery calcification (Saleem et al., 2016).

Chemical Parameters

Major Cations

Sodium has highly variable in concentration (range: 460-1406 mg/l; mean 982 mg/l). All samples have sodium concentration above permissible limit (200 mg/L) prescribed by WHO for drinking purpose. It is observed that all the collected samples are exceeding the safe limit of potassium 12 mg/l, (range: 15-58 mg/l; mean 28 mg/l). According to Sayyed and Bhosle (2011), sewage mixing and agricultural activities seem to be the main causes of the rise in potassium levels in groundwater. Furthermore, because feldspars are more susceptible to weathering and alteration than quartz in silicate rocks, K may have formed from the weathering of feldspar and clay minerals from the aquifer matrix (Kenneth, 2014). Calcium and magnesium contents range between 128-700 and 63-437 mg/l respectively. The mean value of calcium (378 mg/l) is five times the permissible limit of 75 mg/l set by the WHO. Sample 17B is taken from a graveyard and shows the highest concentration (700 mg/l) of Calcium. The mean concentration of Mg (232 mg/l) in the groundwater of the study area is above the WHO permissible limit (200 mg/l). All samples have a higher magnesium concentration than the permissible limit (200 mg/L) prescribed by the WHO, except four samples.

Ō.
T
E
a
20
U
H
e
÷
g
>
2
σ
R
Ξ.
9
0.0
<u> </u>
2
e,
÷
2
Ð
0
5
Ť.
0
5
S
ics
tics
istics
ristics
eristics
teristics
cteristics
acteristics
racteristics
nracteristics
aracteristics
haracteristics
characteristics
l characteristics
al characteristics
cal characteristics
ical characteristics
sical characteristics
ysical characteristics
hysical characteristics
^{physical} characteristics
Physical characteristics
Physical characteristics
2. Physical characteristics
2. Physical characteristics
le 2. Physical characteristics
ole 2. Physical characteristics
ble 2. Physical characteristics
'able 2. Physical characteristics

	Hardness	mg/l	2,800	2,600	2,200	3,000	2,600	1,200	2,400	2,200	3,200	1600	1,300	1,000	1,200	1,600	1,000	1400	3200	2,400	1,000	1,200	2,000	1,800	1,600
mples.	TDS	mg/l	5150	4700	4220	5640	5450	3830	4190	4320	5490	3280	2110	2280	2560	3690	2070	3330	6650	4640	2620	2420	3560	3600	2350
lwater sa	Hq		6.99	6.6	6.54	6.49	6.71	6.76	6.76	7.14	7.04	7.10	6.74	6.73	6.91	6.82	7.09	6.65	7.02	6.54	6.98	6.8	7.15	6.88	7.31
ted ground	Eh	(mv)	202	204	306	246	216	473	326	297	298	278	292	277	258	254	223	280	246	236	207	220	209	200	199
stics of collec	Temperature	(0°)	27.6	27.6	27.5	27.6	27.6	27.5	27.4	27.5	27.5	27.4	26.8	26.8	26.9	26.9	26.6	26.9	26.9	26.7	27	26.9	26.9	27	27
characteri	Turbidity	(NTU)	0.5	0.7	0.32	0.42	1.01	0	0	0	0	0	0	0	0	0	0	1.01	0.65	1.05	1.07	1.03	1.35	0.99	1.26
2. Physical	Microbial Activity		+ve	+ve	-ve	+ve	+ve	-ve	-ve	-ve	-ve	-ve	-ve	-ve	-ve	-ve	+ve	+ve	+ve	+ve	+ve	+ve	+ve	+ve	+ve
Table	Well Depth	(m)	150	180	200	150	170	180	150	120	150	200	250	200	160	200	170	150	200	230	200	180	150	220	95
	Serial No		1B	2B	3B	4B	5B	6B	7B	8B	9B	10B	11B	12B	13B	14B	15B	16B	17B	18B	19B	20B	21B	22B	23B

ISSN:2372-0743 print ISSN:2373-2989 on line Vol. 21 2025

Table 2	2. Continuin	50						
Serial No	Well Depth	Microbial Activity	Turbidity	Temperature	Eh	рН	TDS	Hardness
24B	150	-ve	0	26.9	406	7.15	2700	1,000
25B	55	-ve	0	27	320	6.71	3349	2,000
WHO Limits		•	<5 NTU			6.5-8.5	500	500
Mean	170	I	0.45	27.1	267	6.86	3768	1900
Min	55		0	26.6	199	6.49	2070	1000
Мах	250	I	1.35	27.6	473	7.31	6650	3200

1661

2200

4580

0.82

274

-

1.35

195

St dev.

Major Anions

The concentration of chloride (range 780-4433 mg/L; mean: 2122 mg/L) is highly variable. All collected samples have chloride concentration above WHO standard (250 mg/L) for drinking water. Nitrate concentration ranges between 9.7-98 mg/l with a mean of 45 mg/l. Except two, all collected samples has higher nitrate content as against WHO compliance (10 mg/l). Bicarbonate concentration ranges between 200-580 mg/l with a mean of 393 mg/l. About 90% of total collected samples are unfit for drinking in terms of bicarbonate content as against WHO compliance (300 mg/). The biodegradation of organic matter can cause the release of bicarbonate from the dissolution of carbonate minerals (Jeong, 2001). All of the total collected samples have sulphate content above the permissible limit (250 mg/l). Sulphate concentration shows large deviation (range: 334 - 1026 mg/l; mean: 572 mg/l). Discharge of domestic sewage and industrial waste may be the cause of the high concentration of SO₄²⁻ in ground water (Srivastava et al., 2012).

S
ĕ
d
Ξ
a
Ś
L.
Ĕ
, a
2
JC
Ξ
0
5
Ē
ĕ
t d
ē
E
3
ų,
0
S
Ē
is:
L.
Ę
S
Ľ
Ja
J.
3
Ē
ũ
he
C
~
(T) (T)
le
đ
Ľ
L .

Chemical Parameters	Chemical Parameters	Chemical Parameters	Chemical Parameters	nemical Parameters	al Parameters	ameters	rs		.					
Major Cations Major Anions	Cations Major Anions	ns Major Anions	Major Anions	dajor Anions	Anions				Σ	inor/t	race e	lemen	Its	
Na K Ca Mg Cl N03 HC03 S04	Ca Mg Cl N03 HC03 S04	Mg Cl NO3 HCO3 SO4	CI N03 HC03 S04	N03 HC03 S04	HC03 S04	S04		Cr	Cu	Co	Mn	Ni	Pb	
mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	mg/l mg/l mg/l mg/l mg/l mg/l	mg/l mg/l mg/l mg/l mg/l	mg/l mg/l mg/l mg/l	mg/l mg/l mg/l	mg/l mg/l	mg/l	L L	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg
1,210 27 600 316 3,121 59.82 400 658	600 316 3,121 59.82 400 658	316 3,121 59.82 400 658	3,121 59.82 400 658	59.82 400 658	400 658	658	Ī	0.097	BDL	0.001	0.01	BDL	0.001	BDI
1090 22 580 279 2694.26 49.6 380 667	580 279 2694.26 49.6 380 667	279 2694.26 49.6 380 667	2694.26 49.6 380 667	49.6 380 667	380 667	667		0.1	BDL	0.002	0.001	BDL	0.003	BDI
1,052 27 500 231 2,482 49.5 420 529	500 231 2,482 49.5 420 529	231 2,482 49.5 420 529	2,482 49.5 420 529	49.5 420 529	420 529	529		0.111	BDL	0.003	0.001	BDL	0.005	BDI
1,231 40 620 352 3,121 98.1 380 716	620 352 3,121 98.1 380 716	352 3,121 98.1 380 716	3,121 98.1 380 716	98.1 380 716	380 716	716		0.11	0.099	0.001	0.001	0.625	0.002	0.38
1272 15 560 292 3,262 59.4 400 81 ⁴	560 292 3,262 59.4 400 81 ⁴	292 3,262 59.4 400 81 ⁴	3,262 59.4 400 814	59.4 400 814	400 814	814	_	0.111	BDL	0.001	0.002	BDL	BDL	BDI
1053 25 376 63 2,199 32.76 500 46;	376 63 2,199 32.76 500 46	63 2,199 32.76 500 463	2,199 32.76 500 463	32.76 500 463	500 463	463	_	0.073	BDL	0.001	0.001	BDL	BDL	0.30
1,005 33 400 340 2,447 59.64 380 56	400 340 2,447 59.64 380 56	340 2,447 59.64 380 56	2,447 59.64 380 56	59.64 380 56	380 56	56	5	0.074	BDL	0.002	0.001	BDL	BDL	0.135
1,100 27 440 267 2,660 38.76 370 54	440 267 2,660 38.76 370 54	267 2,660 38.76 370 54	2,660 38.76 370 54	38.76 370 54	370 54	54	5	0.083	BDL	0.001	0.003	BDL	BDL	0.40
1,232 33 560 437 3,546 49.3 230 67	560 437 3,546 49.3 230 67	437 3,546 49.3 230 67	3,546 49.3 230 67	49.3 230 67	230 67	67	3	0.102	BDL	0.002	0.004	BDL	BDL	0.34
960 38 296 209 2,057 9.7 340 45	296 209 2,057 9.7 340 49	209 2,057 9.7 340 49	2,057 9.7 340 49	9.7 340 49	340 49	46	0	0.03	BDL	BDL	BDL	BDL	BDL	0.37
890 20 240 170 851 52.92 420 44	240 170 851 52.92 420 44	170 851 52.92 420 44	851 52.92 420 44	52.92 420 44	420 44	4	10	0.023	0.019	0.001	BDL	BDL	BDL	0.24
560 26 232 102 1063.8 19.36 400 38	232 102 1063.8 19.36 400 38	102 1063.8 19.36 400 38	1063.8 19.36 400 38	19.36 400 38	400 38	36	33	0.017	BDL	BDL	BDL	BDL	BDL	BDI
730 20 216 160 1,348 38.32 420 3	216 160 1,348 38.32 420 3:	160 1,348 38.32 420 3:	1,348 38.32 420 3	38.32 420 3:	420 3:	ŝ	34	0.002	BDL	BDL	BDL	BDL	BDL	BDI
1,071 28 288 214 2,057 30.64 400 4 ⁴	288 214 2,057 30.64 400 4 ⁴	214 2,057 30.64 400 44	2,057 30.64 400 44	30.64 400 44	400 44	4	5	0.005	BDL	BDL	BDL	BDL	BDL	BD
460 16 240 97 780 38.52 380 37	240 97 780 38.52 380 37	97 780 38.52 380 37	780 38.52 380 37	38.52 380 37	380 37	37	75	0.007	BDL	BDL	BDL	BDL	BDL	BD
1048 24 312 151 1737.54 56.82 400 45	312 151 1737.54 56.82 400 42	151 1737.54 56.82 400 42	1737.54 56.82 400 42	56.82 400 42	400 42	42	52	0.003	BDL	BDL	0.017	BDL	BDL	BDI
1406 24 700 352 4,433 58.56 200 83	700 352 4,433 58.56 200 83	352 4,433 58.56 200 83	4,433 58.56 200 83	58.56 200 83	200 83	83	0	0.094	0.01	0.001	0.001	BDL	BDL	BDI
l,116 20 560 243 2,943 34.72 280 51	560 243 2,943 34.72 280 51	243 2,943 34.72 280 51	2,943 34.72 280 51	34.72 280 51	280 51	51	7	0.081	BDL	0.001	0.001	BDL	BDL	BDL
910 58 192 126 1241 32.75 500 51	192 126 1241 32.75 500 51	126 1241 32.75 500 51	1241 32.75 500 51	32.75 500 51	500 51	51	7	0.064	BDL	BDL	BDL	BDL	BDL	BDL
785 42 232 151 1,170 9.77 580 35	232 151 1,170 9.77 580 35	151 1,170 9.77 580 35	1,170 9.77 580 35	9.77 580 35	580 35	35	8	0.036	BDL	BDL	BDL	BDL	BDL	BDL
1,000 26 312 296 1950.3 35.28 380 8	312 296 1950.3 35.28 380 8	296 1950.3 35.28 380 8	1950.3 35.28 380 8.	35.28 380 8.	380 8.	ò	41	0.077	BDL	BDL	BDL	BDL	BDL	BDL
1,032 26 320 243 2056.7 35.8 360 6	320 243 2056.7 35.8 360 6	243 2056.7 35.8 360 6	2056.7 35.8 360 6	35.8 360 6	360 6	9	14	0.043	BDL	BDL	BDL	0.244	BDL	0.088
550 23 240 243 1028.34 57.12 340 6	240 243 1028.34 57.12 340 6	243 1028.34 57.12 340 6	1028.34 57.12 340 6	57.12 340 6	340 6	9	14	0.113	0.011	BDL	BDL	BDL	BDL	BDL

ng	
3. Continui	
Table	

					CI	nemic	al Par	amete	rs						
	L	Aajor	Cation	IS	L.	Major .	Anions			M	inor/t	race e	lemen	ts	
Conial No.	Na	K	Ca	Mg	C	NO3	HC03	S04	Cr	Cu	Co	Mn	Ni	Pb	Fe
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
24B	885	24	128	165	1347.5	29.31	460	479	0.06	BDL	BDL	0.071	BDL	BDL	BDL
25B	006	38	304	301	1453.9	88.8	500	1,026	0.1	0.001	BDL	0.047	BDL	BDL	BDL
WHO Limits	200	12	75	150	250	10	300	250	0.05	2	0.05	0.1	0.07	0.01	0.3
Mean	982	28	378	232	2122	45	393	572	0.065	0.028	0.001	0.012	0.435	0.003	0.285
Min	460	15	128	63	780	9.7	200	334	0.002	0.001	0.001	0.001	0.244	0.001	0.088
Мах	1406	58	700	437	4433	98.1	580	1026	0.113	0.099	0.003	0.071	0.625	0.005	0.402
St dev.	946	43	572	374	3652	88.4	380	692	0.111	0.098	0.002	0.07	0.381	0.004	0.314
*BDL = Be	low D(etecti	on Lin	nit											

Minor and Trace Elements

The quality and composition of groundwater appears to be dependent on recharge and discharge, but the study area shows recharging of collected groundwater samples from wells that are influenced by human activities and direct inputs from the surrounding environment. The concentrations of Fe²⁺ in collected groundwater samples ranges between 0.088-0.402 mg/L with a mean of 0.285 mg/l. It is observed that, mean iron concentration is within the permissible limit (3 mg/l) set by WHO. The chromium concentration in the collected samples ranged from 0.002 to 0.113 mg/l. The average concentration of chromium was found to be 0.065 mg/l, which is above the permissible limit set by the World Health Organization (WHO). However, it is worth noting that approximately 64% of the collected samples exceeded the prescribed limit of 0.05 mg/l for chromium established by the WHO.

The nickel content in the collected samples ranged from 0.244 to 0.625 mg/l, with an average concentration of 0.435 mg/l. However, all of the samples exceeded the recommended limit set by the World Health Organization (WHO), which is 0.07 mg/l. On the other hand, the copper concentration varied between 0.001 and 0.099 mg/l, with a mean of 0.028 mg/l. Fortunately, all of the samples fell within the permissible limit of 2 mg/l for copper in drinking water, as stated by the WHO.

All of the samples collected were found to have manganese concentrations within the safe limit of 0.1 mg/l. The range of manganese content observed in the samples was 0.001-0.071 mg/l, with an average concentration of 0.012 mg/l. The concentrations of lead and cobalt ranged from 0.001 to 0.005 mg/l and 0.001 to 0.003 mg/l, respectively. The WHO limit for lead is 0.01 mg/l and the limit for cobalt is 0.05 mg/l, and both of these elements are found within these limits.

Water Quality Index of Study Area

The weighted arithmetic index (WQI) method is used to assess the quality of groundwater in study area. This method aims to provide a single value that represents the overall water quality by considering various parameters and their concentrations in a sample. The resulting value offers a comprehensive interpretation of water quality and its suitability for different purposes such as drinking, irrigation, and industrial use (Abbasi and Abbasi, 2012). To calculate the WQI for groundwater, the first step involves estimating the quality rating (Qn) for each parameter using the formula: Qn = 100 * [(Vn - Vi) / (Vs - Vi)]. A quality rating of Qn = 0 indicates the absence of pollutants, while 0 < Qn < 100 suggests that the pollutants are within the prescribed standards. A Qn value greater than 100 indicates that the pollutants exceed the standards (Gungoa, 2016). In the collected groundwater samples, the quality ratings (Qn) for parameters such as TDS, Hardness, Na, K, Ca, Mg, HCO₃, NO₃, SO₄, and Cl are all above 100, as mentioned in Table 4. This indicates that these components are the main factors contributing to the deterioration of water quality in study area.

The second step is to calculate the unit weight (Wn) for all the physico-chemical parameters using the formula: Wn = k / Vn, as shown in Table 4. The calculated WQI results (Table 4) indicate that the groundwater in study area is unfit for drinking purposes as suggested by Brown et al. (1972). The water quality of the collected samples is bad for drinking, with a WQI value exceeding 100 (WQI = 109). This implies that proper treatment of the groundwater is necessary before it can be used for any purpose.

samples
groundwater
f collected
Index of
Quality
Water
Table 4.

	hц	TDS	Hardness	Na	K	Са	Mg	CI	N03	HCO3	S04
Parameters	•	mg/l	mg/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Observed Value (Vn)	6.86	3768	1900	982	28	378	232	2122	45	393	572
WHO Limits (Vs)	8.5	500	500	200	12	75	150	250	10	300	250
Ideal Value (Vi)	7	0	0	0	0	0	0	0	0	0	0
Qn	-9.04	753.6	380	491	234	504	154.7	848.8	450	131	229
Wn=k/Vn	0.427	0.001	0.0015	0.0030	0.104	0.008	0.013	0.0014	0.065	0.0075	0.005
Qn*Wn	3.859	0.586	0.586	1.465	24.417	3.907	1.953	1.172	29.3	0.977	1.172
$\sum Wn = 0.63$	16 , ΣQnWi	n = 69.39 ,						M	'QI = 109		

Table 5: WQI range, status and possible usage of the water sample (Brown et al., 1972)

1667

Possible usages	Drinking, irrigation and industrial	Domestic, irrigation and industrial	Irrigation and industrial	Irrigation	Restricted use for irrigation	Proper treatment required before use
Status	Excellent	Good	Fair	Poor	Very poor	Unfit for drinking
IDM	0-25	25-50	51-75	76-100	101-150	Above 150

In order to understand a regional pattern of water quality deterioration, a WQI map of study area has been constructed (Fig. 2). This WQI map revealed the occurrence of three main categories of WQI classes i.e. a) poor (WQI range: 81-94) b) very poor (WQI range: 95-106) and c) extremely bad (WQI range: 107-119). From WQI map, it can be observed that main part of study area is affected by very poor category of WQI for groundwater. Likewise, extremely bad category of WQI occupies the southern part and couple of pockets in center and northeastern part (Fig. 2). On the other hand, two small pockets of poor category lie on the Northwest and Southeast of study area beside one big pocket on the north. This distribution pattern suggests that water quality is mainly hampered in the southern part that is generally increasing northward.

Fig 2: Groundwater water quality index (WQI) of the study area

Ionic Interrelationship

A moderately negative correlation of well depth is observed with NO_3 (-0.48), SO_4^2 (-0.46), and $Mn^{2+}(-0.45)$, suggesting that the reducing condition is increasing with well depth. Microbial/faecal activity is showing a strong positive correlation with turbidity (0.84), $Fe^{2+}(0.40)$ and a strong negative correlation with Eh (-0.72) indicating that microbial activity is increasing with turbidity and Fe²⁺ with decreasing Eh such that no freshwater recharge occurs with appearing anoxic environment. Temperature shows moderate and significant correlations with TDS (0.60), hardness (0.58), Na⁺(0.56), Ca²⁺(0.59), Mg²⁺(0.48), Cl⁻(0.57), Cr²⁺(0.62), Co²⁺(0.64), $Pb^{2+}(0.48)$ and $Fe^{2+}(0.50)$ showing chemical reactions with percolating water with rock as water rock interaction with temperature change in shallower wells. Eh(mv) also shows significant correlation with $Mn^{2+}(0.45)$ and $Fe^{2+}(0.40)$ suggesting more infiltration of meteoric water increases dissolution of minerals comprises Fe²⁺ and Mn²⁺ particulates. Similarly, significant correlation exists with pH and $Ca^{2+}(0.40)$, $Co^{2+}(-0.41)$ and $Pb^{2+}(-0.47)$ suggesting anthropogenic environment as warehouses with chemical use leaches into the ground towards selected wells. TDS shows strong to moderate correlation with hardness(0.93), Na⁺(0.90), Ca²⁺(0.95), $Mg^{2+}(0.76)$, Cl⁻(0.99), NO₃⁻(0.47), negative correlation with HCO₃⁻(-0.57), positive with $Cr^{5+}(0.65)$, $SO_{4^{2-}}(0.59)$ and $Co^{2+}(0.59)$ and Moderate to strong correlation occurs with hardness in relation to Na⁺(0.78), Ca²⁺(0.93), Mg²⁺(0.92), Cl⁻(0.91), NO₃⁻(0.57), HCO₃⁻(-0.62), Cr⁵⁺(0.72), $SO_{4^{2}}(0.67)$ and $Co^{2+}(0.63)$ signifying importance of dissolution of minerals, water rock interaction and anthropogenic activities like sewage impact as well as Cr⁵⁺ deposits infiltrate into available wells. Very strong to moderate correlation occurs with Na⁺ and Ca²⁺(0.80), Mg²⁺(0.65), Cl⁻(0.90), NO₃⁻(0.40), Cr⁵⁺(0.50), SO₄²⁻(0.51), Co²⁺(0.51) and negative with HCO₃⁻(-0.40) showing similar rock water interaction. Moderate to significant correlation exists between Ca^{2+} and $Mg^{2+}(0.70)$, $Cl^{-}(0.93)$, $NO_{3}^{-}(0.49)$, negative with $HCO_{3}^{-}(-0.57)$, positive with $Cr^{5+}(0.66)$, $SO_4^{2-}(0.51)$, $Co^{2+}(0.68)$ and $Pb^{2+}(0.42)$ exhibiting influence of calcareous rock beds along with release of trace element into the surrounding aquifers that exposed to possible contamination due to geogenic and anthropogenic matter. Moderate to significant correlation occurs between Mg^{2+} and $Cl^{-}(0.74)$, $NO_{3}^{-}(0.57)$, negative with $HCO_{3}^{-}(-0.58)$, $Cr^{5+}(0.67)$, $SO_{4}^{2-}(0.73)$ and $Co^{2+}(0.48)$ similar with correlations of TDS, hardness, Na⁺, and Ca²⁺ interpretation for sources. Significant

correlation exists between Cl⁻ and NO₃-(0.40), negative with HCO₃-(-0.62) and positive with $Cr^{5+}(0.60)$, $SO_4^{2-}(0.51)$ and $Co^{2+}(0.59)$ which implicitly shows sewage impact (Ali and Adnan, 2021) with release of Cr⁵⁺, SO₄²⁻ and Co²⁺ through anthropogenic matter (waste) in the studied environment. Significant correlation also occurs between NO_{3} and $Cr^{5+}(0.55)$, $SO_{4}^{2-}(0.64)$, $Cu^{2+}(0.58)$ and Ni²⁺(0.47) implicitly suggests release of such ionic species from geological matter as deposits above and beneath the surface along with Ni²⁺ added from corrosive pipelines (WHO, 2011). Cr⁵⁺ strongly and moderately correlates with HCO₃ (0.73), Co²⁺(0.57) and Pb²⁺(0.41)where Cr⁵⁺ and Pb²⁺ may release from anthropogenic sources with few industrial units that uses chrome plating as product through metal usage and tail pipe emitting materials (Kumar et al., 2016; Zhang et al., 2023) while decomposition of organic matter releases HCO₃- (Ali and Adnan, 2021). Cu^{2+} shows very strong correlation with Ni²⁺(0.90) and significant correlation with $Fe^{2+}(0.42)$ indicating release from municipal pipelines (WHO, 2011) that may corrode due to salinity and acidic pH in some wells. Co²⁺ moderately correlates with Pb²⁺(0.68) showing same source origin whilst Ni²⁺ significantly correlates with Fe²⁺(0.40) that explicitly indicates corrosive pipelines as their sources (WHO, 2011). However, Pb²⁺ could potentially affect nervous system and kidney of individual (Xiao et al., 2019; Li et al., 2023).

	ш	Ð																					
	- Е	<u>م</u>		-															-				_
	2 Σ	2		\vdash															\vdash				_
	- U	0																					_
	υ	J																					
	S	0	4																				
	U	-																					
	о Ч	m																				H	
eters	0 Z	m																			1	-0.16	
Iram	σ																		1		<mark>0.40</mark> c	-0.62	
tion matrix of physicochemical pa	Βg																	1	<mark>0.74</mark>	q	0.57c	-0.58	
	ca																H	0.70b	0.93a		0.49c	1	0.57c
	¥															-	-0.15	0.06	-0.08		-0.02	0.35	
	Ra														1	0.05	0.80a	0.65b	<mark>0.90a</mark>		<mark>0.40</mark> c		<mark>0.40</mark> c
	Hard	ness											1		0.78b	-0.05	0.93a	0.92a	0.91a		<mark>0.57</mark> c	-0.62b	
	TDS											-	<mark>0.93a</mark>		0.90a	-0.06	0.95a	0.76a	0.99a		0.47a	ı	0.57c
orrela	Н										7	-0.24	-0.19		-0.28	0.00	- 0.40c	0.00	-0.18		-0.32	-0.19	
e-6. C	æ									1	-0.08	-0.07	-0.22		0.04	-0.03	-0.16	-0.24	-0.06		-0.04	0.24	
Tabl	Tem	ġ.							1	0.15	-0.18	0.60c	<mark>0.58c</mark>		<mark>0.56c</mark>	0.14	0.59c	0.48c	0.57c		0.32	-0.05	
	Turb	idity						1	-0.13	-0.63	0.01	0.10	0.12		0.12	0.06	0.12	0.10	0.09		0.01	-0.04	
	Micro	bial	Activit y			1		0.84a	-0.11	-0.72b	-0.01	0.21	0.21		0.12	-0.02	0.28	0.11	0.17		0.16	-0.13	
	Well	Depth		1		0.06		0.05	-0.21	-0.11	-0.29	-0.02	-0.14		0.12	-0.11	0.05	-0.31	0.05		-0.48c	-0.14	
				Well	Depth	Microbia	I Activity	Turbidity	Tempera ture	Eh	Hq	TDS	Hardnes	s	Na⁺	¥	Ca ²⁺	Mg ²⁺	Ċ		NO ³⁻	HCO ₃ ⁻	

ISSN:2372-0743 print ISSN:2373-2989 on line Vol. 21 2025

1671

2025

	щ	Ð													1
	Ъb												1		-0.05
	ż											1	0.23		<mark>0.39</mark> с
	۲									1		-0.09	-0.11		-0.19
	ვ							1		-0.22		0.01	<mark>0.68b</mark>		0.24
	C						1	0.08		-0.09		0.90a	0.24		0.42c
	S04				1		0.18	0.18		0.21		0.18	0.09		-0.02
	ŋ			1	<mark>0.73</mark> c		0.24	0.57c		0.07		0.19	0.41c		0.12
	HCO3			-0.23	-0.26		-0.08	-0.29		0.27		-0.06	0.03		-0.19
	NO3			0.55c	0.64c		<mark>0.58c</mark>	0.32		0.17		0.47c	0.27		0.08
	U			0.60c	0.51c		0.19	<mark>0.59c</mark>		-0.18		0.20	0.24		0.24
	Вg			0.67b	<mark>0.73b</mark>		0.27	0.48c		-0.02		0.26	0.17		0.22
	Ca			<mark>0.66b</mark>	0.51c		0.30	<mark>0.68b</mark>		-0.28		0.27	0.42c		0.20
	¥			0.10	0.08		0.21	-0.12		0.02		0.23	0.00		0.21
	Na			<mark>0.50c</mark>	0.51c		0.20	0.51c		-0.05		0.23	0.21		0.28
	Hard	ness		0.72b	0.67b		0.31	0.63b		-0.16		0.29	0.32		0.22
	TDS			0.65b	0.59c		0.28	0.59c		-0.14		0.28	0.28		0.22
	Ηd			-0.06	0.00		-0.31	-1	0.41c	0.12		-0.32	I	0.47c	0.05
	ЕЪ			-0.03	-0.16		-0.08	0.18		0.45c		-0.14	-0.05		<mark>0.37</mark> с
	emp.			<mark>0.62c</mark>	0.33		0.22	<mark>0.64c</mark>		-0.14		0.24	<mark>0.48c</mark>		0.50c
gui	urbidi T	ť		0.26	0.25		-0.01	-0.17		-0.23		0.07	0.00		-0.44c
OILUIUU	Microbi T	al	Activity	0.20	0.23		0.19	-0.18		-0.25		0.26	0.02		<mark>-0.39c</mark>
-0.	Well	Dept	ء	-0.37	1	0.46c	-0.06	0.13		1	0.45c	0.00	0.10		0.00
I a D I				Cr ²⁺	SO4 ²⁻		Cu ²⁺	Co ²⁺		Mn^{2+}		Ni ²⁺	Pb ²⁺		Fe ²⁺

., Ţ Č 4 - PI È

PCA (Principal component Analysis)

Principal component analysis allowed to have a comparative approach about contaminants (anthropogenic or natural) whether emission sources affecting rainwater (Haider et al., 2022) and inland sources contributing in groundwater contamination (Ali and Adnan, 2021). It comes in one of the source apportionment models to predicts potential pollution sources (Li et al., 2023). PCA determines the possible contaminants along with their sources and here groundwater contamination with relative sources can be visualized within semiarid environment showing that collected samples of groundwater with different physicochemical and trace elements are evenly or closely involved in fluctuating groundwater quality. For further visualization, (Table 7) elaborates principal components and screening of groundwater quality parameters.

Factor 1 explains 36.368% of total variance (Table 7). A strong relationship of TDS (0.942) and hardness (0.969) is clustered with major cations Na⁺ (0.822), Ca²⁺ (0.938), Mg²⁺ (0.849) anions Cl⁻ (0.902), NO₃⁻ (0.632), SO₄²⁻(0.672). Similarly, the strong association of trace metals like Cr⁵⁺ (0778), Cu²⁺ (0.416), Co²⁺ (0.674), Ni²⁺ (0.400), Pb²⁺ (0.427) indicates industrial processing impacts. It is consistent with the fact that mineral ware houses and ore processing sites are frequent in study sites. These are expected to contribute major fraction of dissolved trace metals in the groundwater of the study area.

Factor 2 described 13.407% of total variance (Table 7) where sewage impact in terms of fecal bacteria (-0.875) and turbidity (-0.851) due to fecal organics that are controlled by the delicate balance of oxygen and aerobic bacteria. This is consistent with the strong relation with Eh (0.850) and dissolved iron (0.584) (Ferrous).

Factor 3 expresses 10.709% of total variance where well depth (-0.81) strongly influence the redox conditions as indicated by a good negative relationship with NO₃⁻ (0.63), SO₄²⁻ (0.507) and Mn²⁺ (0.607) along with positive relationship with Co²⁺ (-0.400). It means that bacterial respiration increases with depth where main oxidants are nitrate, sulfate and manganese reducing bacteria. Factor 4 explains 10.039% of total variance where three parameters pH (-0.555), Cu²⁺ (0.723), Ni²⁺ (0.745) are strongly associated. Negative relationship of pH with Cu²⁺ and Ni²⁺ concentration clearly indicate the role of acidity in metal solubilization from host minerals and enrichment in associated groundwater.

Factor 5 only explains 7.542% of total variance. This factor reveals a strong inverse association of Fe²⁺ (-0.603) and Pb²⁺ (0.606). The geochemical behavior of both these ions are strongly influenced by the occurrence of oxidants as seen in (Ali and Adnan, 2021). Both are base metals and chalcophile in nature. The cooccurrence of both in the groundwater is positive in accordance that suggest the same source. However, However, the situation is opposite in the present study. It clearly indicates that the source of both elements is different. It is consistent with the fact that lead based battery manufacturing is quite common in the study area. Hence, lead is incorporated into the groundwater from industrial sites. On the other hand, iron is sourced from natural sediments of aquifers where oxygen is extensively respirated by the bacteria by means of organic matter decomposition (Ali and Adnan, 2021; Haider et al., 2022). It is evident by the positive association of HCO₃⁻ (0.457) with this factor.

Factor 6 described 5.459% of total variance in which only 3 parameters Temp (0.411), K⁺ (0.682), NO₃⁻ (-0.400) are clustered in this factor but very important to explain water rock interaction which is bacterial mediated. The cooccurrence of K⁺ and NO₃⁻ in inverse relationship suggests that both are from the same source like sewage (Ali and Adnan, 2021). The 2 parameters are strongly controlled by temperature as the bacterial activity is mainly influenced by temperature (Haider et al., 2022). As the groundwater temperature increases, the nitrate content is respirated that the results into decrease in available nitrate. On the other hand, Na⁺ and K⁺ are the main cation in sewage. Where Na⁺ is adsorbed on the sediments due to pH changes. However, potassium remains in the groundwater due to its higher solubility at wide pH ranges (Ali and Adnan, 2021; Haider et al., 2022).

Parameters	Principal Component Analysis											
I ai ainetei s	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7					
Well depth	-0.122	-0.188	-0.813ª	0.289	-0.069	-0.041	0.270					
Microbial	0.220	-0.875ª	0.074	0.207	0.051	0.031	0.062					
Turbidity	0.133	-0.851ª	0.069	0.083	0.170	0.226	0.121					
Temperature	0.680 ^b	0.401¢	-0.010	0.074	0.110	0.411¢	-0.149					
Eh	-0.135	0.850 ^a	0.054	-0.146	0.069	-0.103	0.258					
рН	-0.284	-0.147	0.230	-0.555¢	-0.468c	0.269	-0.284					
TDS	0.942 ^a	-0.011	-0.134	-0.130	-0.063	-0.029	0.206					
Hardness	0.969 ^a	-0.069	-0.029	-0.144	-0.064	-0.032	-0.034					
Na+	0.822 ^a	0.061	-0.162	-0.089	-0.052	0.072	0.466 ^c					
K+	-0.003	0.083	0.341	0.342	-0.119	0.682 ^b	0.257					
Ca ²⁺	0.938 ^a	-0.064	-0.237	-0.032	0.040	-0.069	0.034					
Mg ²⁺	0.849 ^a	-0.063	0.194	-0.238	-0.164	0.012	-0.100					
Cl	0.902 ^a	-0.006	-0.236	-0.199	-0.113	0.011	0.211					
NO ₃ -	0.632 ^b	0.038	0.514 ^c	0.175	0.125	-0.400c	-0.121					
HCO ₃ -	-0.525 ^b	0.198	0.319	0.347	0.457c	0.296	0.202					
SO ₄ ²⁻	0.672 ^b	-0.177	0.507¢	-0.264	0.070	-0.003	0.082					
Cr ⁵⁺	0.778 ^b	-0.006	0.294	-0.134	0.250	0.224	-0.141					
Cu ²⁺	0.416 ^c	0.059	0.301	0.723 ^b	-0.299	-0.228	-0.065					
Co ²⁺	0.674 ^b	0.400c	-0.400c	-0.007	0.401¢	0.066	-0.229					
Mn ²⁺	-0.156	0.298	0.607 ^b	-0.300	0.242	-0.252	0.345					
Ni ²⁺	0.400c	-0.011	0.271	0.745 ^b	-0.309	-0.168	0.026					
Pb ²⁺	0.427 ^c	0.154	-0.185	0.359	0.606 ^b	0.054	-0.309					
Fe ²⁺	0.284	0.584 ^c	-0.047	0.215	-0.603 ^b	0.213	-0.098					
Eigen values	8.365	3.084	2.463	2.309	1.735	1.255	1.007					
%Variance	36.368	13.407	10.709	10.039	7.542	5.459	4.378					
%Cumulative	36.368	49.774	60.483	70.522	78.064	83.523	87.901					

Table 7: Principal components of collected groundwater samples.

Conclusion

The occurrence of high salinity, hardness, and bacterial contamination is significantly deteriorating the water quality of study area. Most of the physiochemical parameters do not meet the compliance standards set by the World Health Organization (WHO). Moreover, both physicochemical and trace elements are contributing to the deterioration of groundwater quality. The calculated value of WQI falls into unfit category. It is concluded that groundwater of

study area is physio-chemically and biologically unfit for drinking purpose. Industrial pollution is also responsible for water chemistry imbalance. This implies that the water is not suitable for drinking, irrigation, or industrial purposes. Proper treatment is necessary before using the groundwater for any intended uses.

References

Abbasi, T., Abbasi, S. A. (2012). Water quality indices. Elsevier, Amsterdam, Netherlands, 362.

Ali, S. F., & Adnan, K. (2021). Physicochemical and Microbiological Characterization of Groundwater along the Banks of Malir River in Karachi, Pakistan. *International Journal of Earth Sciences Knowledge and Applications*, *3*(1), 37-52.

- Brown R. M., McClelland N. I., Deininger R. A., O'Connor M. F. (1972). A water quality indexcrashing the physiological barrier. *Indic. Environ. Qual.*, **1**, 173–182.
- Brown, R. M., McClelland, N. I., Deininger, R. A., Tozer, R. G. (1970). A water quality index: Do we dare? *Water & Sewage Works*, **117**, 339–343.
- Chen, L., Zhou, M., Wang, J., Zhang, Z., Duan, C., Wang, X., ... & Fang, L. (2022). A global metaanalysis of heavy metal (loid) s pollution in soils near copper mines: Evaluation of pollution level and probabilistic health risks. *Science of the Total Environment*, *835*, 155441.
- Chima, G.N, Nwaugo, V. and V.C.O kpe (2007). Water resources development in Nigeria: Some environmental considerations a review. *International Journal of Biotechnology and Allied Sciences.*; 2 (1):109-115.
- chromium [Cr(VI)]: A comprehensive review. Chemosphere 207, 255–266. https://doi.org/10.1016/j.chemosphere.2018.05.050.
- Dohare, D., Deshpande, S., & Kotiya, A. (2014). Analysis of Ground Water Quality Parameters: A Review. *Research Journal of Engineering Sciences*, 3(5), 26-31.
- Gungoa, V. (2016). Use of Water Quality Indices for Water Quality Assessment in Small Island State: A Case Study in the Northern Aquifer of Mauritius. *International Journal* of Sciences: Basic and Applied Research, **30**, 142-150
- Haider, S. W., Kazmi, S. J. H., Arsalan, M., Naseem, S., & Kanwal, H. (2022). Spatial evaluation of precipitation patterns in the catchment area of Malir River during monsoon spells

of 2019 through geospatial techniques. Arabian Journal of Geosciences, 15(17), 1435.

- Jeevanandam, M., Kannan, R., Srinivasalu, S., & Rammohan, V. (2007). Hydrogeochemistry and Groundwater Quality Assessment of Lower part of the Ponnaiyar River Basin, Cuddalore District, South India. *Environ. Monit. Assess*, 132(1-3), 263-274.
- Jeong, C. H. (2001). "Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea," *Journal of Hydrology*, vol. 253, pp. 194-210.
- Knudsen, A. B., & Slooff, R. (1992). Vector-borne disease problems in rapid urbanization: new approaches to vector control. *Bull World Health Organ*, 70(1), 1-6.
- Kumar, M., Rahman, M. M., Ramanathan, A. L., & Naidu, R. (2016). Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. *Science of the Total Environment*, 539, 125-134.
- Li, S., Su, H., Han, F., & Li, Z. (2023). Source Identification of Trace Elements in Groundwater Combining APCS-MLR with Geographical Detector. *Journal of Hydrology*, 129771.
- Mohamadi, M., Mohamadi, G.M., Ebrahimi, K. (2011). Temporal and spatial variation of groundwater quality in Qazvin. *Journal of Iran Water Research* 5 (8), 41-52.
- Momba M.N.B., Malakate V.K., Theron J. (2006). Abundance of pathogenic Escherichia Coli, Salmonella typhimurium and Vibrio cholerae in Nkonkobe drinking water sources. *Journal of Water and Health* 4, 289-296.
- Okiongbo, K.S., & Akpofure, E. (2014). Identification of hydrogeochemical processes in groundwater using major ion chemistry: a case study of Yenagoa and environs, southern Nigeria. *Global Journal of Geological Sciences, 12*, 39-52.
- Ramakrishnaiah, C. R., Sadashivaiah, C., and Ranganna, G. (2009). Assessment of Water Quality Index for the Groundwater in Tumkur Taluk, Karnataka State, India. *E-Journal of Chemistry*. 6 (2), 523-530.
- Saha, L. C., Kumar, S. (2006). Comparative quality of potable waters at Bhagalpur, India. *Acta Hydrochimica et Hydrobiologica* 18, 459-467.
- Saleem, M., Athar, H., Gauhar, M. (2016). Analysis of groundwater quality using water quality index: A case study of greater Noida (Region), Uttar 'Pradesh (U.P), India, Cogent engineering 3, 1237927.
- Sarada, P., & Bhushanavathi, P. (2015). Analysis of Groundwater Samples of Gnanapuram Area of Visakhapatnam City in Andhra Pradesh, India for Sodium, Potassium and Chloride: The Potability Concern. *Global Journal for Research Analysis*, 4(10).
- Sayyed, J., and Bhosle, A. (2011). Analysis of chloride, sodium and potassium in groundwater samples of Nanded City in Mahabharata, India, *European Journal of Experimental Biology*, vol. 1, pp. 74-82.

- Srivastava, R.K. and Pandey D. (2012). Physico-chemical and microbiological quality evaluation of groundwater for human domestic consumption in adjoining area of Omti Nallah, Jabalpur (M.P.), India. *International Journal of Environmental Sciences*. 3(3).
- World Health Organization. (1993). Guidelines for drinking-water quality, Geneva.
- World Health Organization. (2004). Guidelines for drinking-water quality, Geneva.
- World Health Organization. (2008). Guidelines for drinking-water quality. Geneva:
- World Health Organization. (2011). Guidelines for drinking-water quality (4th ed).
- Xiao, J., Wang, L., Deng, L., Jin, Z., 2019. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 650, 2004–2012. https://doi.org/10.1016/j. scitotenv.2018.09.322.
- Yisa, J., Jimoh, T. (2010). Analytical Studies on Water Quality Index of River Landzu. *American Journal of Applied Sciences*, 7, 453-458.
- Zhang, X., Gao, S., Wu, Q., Li, F., Wu, P., Wang, Z., ... & Zeng, J. (2023). Buffer zone-based trace elements indicating the impact of human activities on karst urban groundwater. *Environmental Research*, *220*, 115235.

This paper DOI: 10.5281/zenodo.14724737 Journal New Website web1: https://ijgsw.eu.org/ web2: https://ijgsw.net/ Journal Old Website: http://ijgsw.comze.com/ is no longer used You can submit your paper to email: Jichao@email.com Or IJGSW@mail.com