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Abstract: The contamination of surface and groundwater by chemical pollutants poses a
major global challenge, threatening ecological balance, human health, and sustainable water
resources. Pollutants, including heavy metals, organic compounds, nutrients,
pharmaceuticals, per- and polyfluoroalkyl substances (PFAS), and microplastics, infiltrate
aquatic systems through industrial discharges, mining, agriculture, and urban runoff. Their
persistence, transformation, and mobility are governed by complex chemical and biological
mechanisms, such as adsorption, precipitation, complexation, redox reactions, and
microbial biodegradation. For instance, arsenic undergoes redox cycling between As(III)
and As(V), mercury is transformed into toxic methylmercury, while lead forms insoluble
hydroxides or carbonates depending on pH and carbonate concentrations. Similarly,
organic pollutants undergo hydrolysis, photolysis, and microbial degradation, though many
yield toxic intermediates. Emerging contaminants like PFAS resist degradation due to
strong C-F bonds, while microplastics act as carriers for hydrophobic organics and metals.
Mechanistic insights are vital for understanding toxicity, such as cadmium-induced

oxidative stress, lead interference with neurotransmission, and endocrine disruption by
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organics. This review synthesizes recent advances in the chemistry and mechanisms
governing contaminant behavior in surface and groundwater. It highlights the mechanistic
underpinnings of pollutant fate, health effects, and remediation technologies, emphasizing
the need for integrated, interdisciplinary approaches to safeguard water quality and

ecosystem health.

Keywords: Surface water; Groundwater contamination; Heavy metals; Emerging pollutants;

Mechanisms.

1.0 Introduction

Water is an indispensable natural resource, vital for sustaining life, agricultural
productivity, industrial processes, and ecological integrity. However, the contamination of
freshwater resources—both surface and groundwater—has emerged as one of the most
pressing environmental concerns of the 21st century. The growing release of contaminants
and pollutants into aquatic systems has been driven by rapid industrialization, urbanization,
agricultural intensification, and population growth (Ihenetu et al., 2024; Lapworth et al,,
2023; Ubuoh et al, 2023). Polluted sites, whether associated with mining, industrial
effluents, landfills, or agricultural hotspots, serve as point and non-point sources of diverse
contaminants that compromise water quality and threaten human and ecosystem health

(Kalmakhanova et al., 2025; Okoro et al., 2023).

Groundwater, often regarded as naturally protected, is increasingly vulnerable to
contamination due to the infiltration and percolation of pollutants from surface activities.
Surface water bodies such as rivers, lakes, and wetlands, meanwhile, receive direct
discharges of untreated or poorly treated effluents. Collectively, these processes result in
the accumulation of contaminants including heavy metals (lead, cadmium, mercury,
arsenic), nutrients (nitrate, phosphate), organic pollutants (pesticides, industrial solvents,
hydrocarbons), and emerging pollutants such as pharmaceuticals, microplastics, and PFAS
(Alvarado-Zambrano et al., 2023; Ubuoh et al,, 2023). A critical dimension of understanding

the impacts of contaminants lies in the chemistry and mechanisms underlying their
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environmental behavior. For example, arsenic mobility in groundwater is strongly

influenced by redox transformations:
As(V)(Arsenate) + 2e~ — As(I111)(Arsenite)

This reduction increases toxicity and solubility, exacerbating risks to human health
(Gao et al, 2020; Han et al,, 2019; Li, Bundschuh, et al,, 2022; Zhang, Xie, et al.,, 2023).

Similarly, the precipitation of lead as insoluble hydroxide can be expressed as:
Pu** +20H " — Pb(OH )y

Such geochemical processes determine whether pollutants persist in soluble forms or
are immobilized in sediments. Organic contaminants exhibit complex transformation
pathways, undergoing hydrolysis, photolysis, and oxidation, often forming intermediate
metabolites that can be equally or more toxic than their parent compounds (Mitra et al,,
2024a; Shi et al,, 2023; Yang et al,, 2025). Pharmaceuticals, for instance, degrade through

hydroxyl radical attack in advanced oxidation processes:
Pharmaceutical + eOH — Organicradicals — Intermediateproducts — C'Oqy+HO

Yet incomplete mineralization results in persistent byproducts (Hama Aziz et al., 2025;
Kanakaraju et al., 2025; Zhang, Guo, et al., 2023). Emerging pollutants introduce additional
challenges. PFAS resist degradation due to strong carbon-fluorine (C-F) bonds, making
them virtually non-biodegradable (Wackett, 2024; Zhang et al., 2022). Microplastics serve
as both pollutants and vectors, adsorbing hydrophobic organic contaminants and heavy
metals onto their surfaces, thus facilitating co-transport into aquatic systems (Adeleye et al.,

2024; Pal et al.,, 2024).

The mechanistic toxicology of these contaminants reveals profound health impacts.
Lead disrupts neurotransmission by mimicking calcium and interfering with synaptic
signaling (de Souza et al., 2019; Liu et al.,, 2021). Cadmium generates oxidative stress by
producing reactive oxygen species (ROS) that damage proteins and DNA (Branca et al., 2020;
Salaudeen et al.,, 2025). Mercury undergoes microbial methylation to form methylmercury,

which bioaccumulates and biomagnifies in food chains, posing neurological risks (Kang et
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al,, 2024; Lavoie et al., 2013). Similarly, nitrates in drinking water are reduced in the human
body to nitrites, which can form carcinogenic N-nitrosamines under acidic gastric
conditions (Picetti et al., 2022; Ward et al., 2005). Beyond health, contaminants profoundly
affect aquatic ecosystems. Excessive nutrient inputs trigger eutrophication, resulting in
harmful algal blooms, oxygen depletion, and fish mortality (San Diego-McGlone et al., 2024).
Persistent organic pollutants disrupt endocrine systems in aquatic organisms, leading to
reproductive and developmental abnormalities (Ibor et al., 2023; Peskova & Bladhova,

2025).

The significance of reviewing the chemistry and mechanisms of contaminants in
polluted sites cannot be overstated. Mechanistic knowledge informs risk assessment,
enhances predictive models of contaminant transport, and underpins the development of
effective remediation technologies (Burgess et al,, 2023; Khalifa et al.,, 2024; Samborska-
Goik & Pogrzeba, 2024). This review synthesizes recent advances (2020-2025) in
contaminant chemistry, transport mechanisms, toxicology, and remediation, with a focus on
both surface and groundwater systems. By bridging geochemistry, environmental
chemistry, and mechanistic toxicology, this work aims to provide a comprehensive
perspective on the threats posed by contaminants and the scientific basis for sustainable

water protection.
2.0 METHODOLOGY

This review was developed through a systematic and integrative literature synthesis
approach. Peer-reviewed journal articles, conference proceedings, and authoritative reports
published between 2020 and 2025 were prioritized to ensure currency and relevance.
Databases including Scopus, Web of Science, ScienceDirect, and PubMed were queried using
combinations of keywords such as surface water contamination, groundwater pollution,

pollutant chemistry, mechanistic toxicology, and remediation technologies.

The inclusion criteria were: (i) studies addressing the occurrence, chemistry,
mechanisms, or impacts of pollutants in surface or groundwater; (ii) mechanistic studies

describing transformation pathways (e.g., redox, adsorption, microbial degradation); and
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(iii) studies reporting environmental or health implications of pollutants. Exclusion criteria
included studies without a mechanistic focus or those limited to modeling without

chemical/biochemical interpretation.

The final pool of literature was critically analyzed, synthesized, and organized
thematically into major contaminant classes and mechanisms. Emphasis was placed on
chemical equations, mechanistic pathways, and toxicological processes in explanatory
contexts. This ensured a balanced perspective that integrates fundamental chemistry,

environmental processes, toxicological endpoints, and remediation strategies.
3.0 SOURCES AND CLASSES OF CONTAMINANTS

Contaminants entering aquatic systems originate from both natural and anthropogenic
activities. Natural processes such as weathering of rocks, volcanic eruptions, and
biogeochemical cycling contribute arsenic, fluoride, and other trace metals to groundwater
(Bianchini et al., 2020; Chandrajith et al., 2020; Mustafa et al., 2023; Raju, 2022). However,
anthropogenic activities are the dominant drivers of pollution in modern systems, as shown

in Figure 1.

ey ﬁ 15}
!d! ﬁ | ﬁ A
INDUSTRIAL AGRICULTURAL URBAN/ EMERGING
SOURCES INPUTS DOMESTIC CONTAMINANTS

.

Figure 1 Sources of contaminants in aquatic systems

3.1 Industrial sources
Effluents from textile, tannery, pharmaceutical, chemical, and mining industries release
heavy metals (e.g., Pb%*, Cd?*, Cr3*'), solvents, hydrocarbons, and complex organics

(Christian et al.,, 2023; Matebese et al., 2024; Okoro et al.,, 2023; Oladimeji et al.,, 2024;
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Saravanakumar et al., 2022; Zhao et al., 2022). Industrial activities are major contributors to
the release of a wide range of emerging contaminants (ECs) into environmental media,
particularly aquatic systems. These contaminants include pharmaceuticals and personal
care products, per- and polyfluoroalkyl substances (PFAS), industrial solvents, flame
retardants, and endocrine-disrupting chemicals that are not always effectively removed by
conventional wastewater treatment systems. Chemical manufacturing processes and the
pharmaceutical industry discharge active pharmaceutical ingredients (APIs), synthesis by-
products, and transformation products into wastewater, which can persist in the
environment due to their chemical stability and resistance to degradation (Li et al., 2025).
Similarly, textile and dyeing industries contribute synthetic dyes and surfactants, while
electronics and fluorochemical manufacturing plants release PFAS and specialty metal-
organic compounds, which can accumulate in water bodies and sediments (Yusuf et al,,
2021). In many cases, industrial effluents contain complex mixtures of contaminants that
are not captured in regulatory monitoring programs and therefore continue to pose
ecological and human health risks (Samal et al, 2022). This pervasive industrial input
underscores the need for improved regulatory frameworks and advanced treatment

technologies designed to monitor and mitigate industrial EC sources.
3.2 Agricultural inputs

Excessive fertilizer and pesticide wuse introduce nitrates, phosphates, and
organophosphates into groundwater and surface water. The classic pathway of nitrate

contamination occurs via:
NH[ +20; = NOy +2H" + H>0 (Nitrification)

Nitrates leach into aquifers, elevating risks of methemoglobinemia and carcinogenic

nitrosamine formation (Hagage et al., 2025; Rotiroti et al., 2023).

Modern agricultural systems are significant contributors to the release of emerging
contaminants (ECs) into the environment. These contaminants include veterinary
pharmaceuticals, antibiotics, pesticides, hormones, microplastics, and other organic

pollutants that are not fully regulated or routinely monitored but have been increasingly
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detected in soils, water bodies, and food crops. Veterinary medicines and antibiotics
administered to livestock can enter agricultural soils directly through grazing or indirectly
when manure and slurry from intensive animal production are applied as fertilisers, leading
to residues in soil and runoff into surface and groundwater bodies (Tillitt & Buxton, 2012).
Pesticides and herbicides, widely used to control pests and weeds, can persist in the
environment, migrate via runoff and leaching, and adversely affect non-target organisms
and ecosystem health (Nwankwo et al., 2025). The use of biosolids and treated wastewater
for irrigation also introduces pharmaceuticals, hormones, and personal care products into
farmlands, resulting in the accumulation of these compounds in soil and uptake by plants
(Sardar et al, 2025). Additionally, microplastics and nanomaterials derived from
agricultural plastics, mulching films, and soil amendments are increasingly recognised as
emerging pollutants that alter soil properties and potentially facilitate transport of other
contaminants. Collectively, these agricultural sources contribute to a complex mixture of
ECs in agroecosystems, posing ecological risks and potential human health concerns
through food chain transfer, contamination of water resources, and disruption of soil

microbial communities.
3.3 Urban and domestic sources

Sewage, landfill leachates, and stormwater runoff discharge pharmaceuticals,
microplastics, surfactants, and endocrine-disrupting compounds (EDCs) (Peter et al., 2024;
Werbowski et al., 2021; Wilkinson et al.,, 2022). Urban and domestic activities are major
contributors to the release of emerging contaminants (ECs) into aquatic environments
through multiple pathways. A significant source is municipal and household wastewater,
which carries pharmaceuticals and personal care products (PPCPs) such as analgesics,
antibiotics, fragrances, and sunscreen agents that enter sewer systems through human use
and improper disposal (AL Falahi et al,, 2022). These contaminants often bypass or are
partially removed by conventional wastewater treatment plants (WWTPs), ultimately being
discharged into rivers, lakes, and coastal waters, where they persist due to their chemical
stability and resistance to degradation (Yuan et al., 2025). Domestic sewage and greywater

from residential areas also contribute household chemicals and surfactants into the urban
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water cycle, including detergents, disinfectants, and endocrine-active compounds (Zillien et
al., 2022). Additionally, urban stormwater runoff transports ECs from impervious surfaces
such as roads, roofs, and parking lots into water bodies; these include pesticides, vehicle-
derived hydrocarbons, microplastics, and PPCPs from everyday human activities (Mutzner
et al, 2023). The combination of dense population, extensive wastewater networks, and
inadequate removal of trace organic contaminants makes urban and domestic sources key
drivers of EC presence in the environment, posing ecological and human health risks due to

long-term exposure even at trace concentrations.
3.4 Emerging contaminants

PFAS, pharmaceuticals, personal care products, and nanomaterials represent new
classes of pollutants with poorly understood long-term mechanisms (Lyu et al., 2022; Peter

et al., 2024; Wilkinson et al., 2022).

Pollutants may exist as dissolved ions, complexes, particulates, or sorbed phases, and
their distribution depends on environmental conditions such as pH, redox potential (Eh),
ionic strength, and organic matter content. Understanding their chemical speciation is
critical because toxicity, mobility, and persistence are governed by these forms. For
example, hexavalent chromium (Cr(VI)) is highly mobile and toxic, while trivalent
chromium (Cr(III)) tends to precipitate or adsorb to surfaces (Arp & Hale, 2022; Dvoynenko
et al.,, 2021; Rapljenovi¢ et al., 2024; Zulfiqar et al., 2023):

CrO;™ + 4H,0 + 3¢~ — Cr(OH)3(s) + 50H~

Thus, the classification of contaminants not only reflects their origin but also their

chemical mechanisms of persistence, transformation, and impact.
4.0 CHEMISTRY OF VARIOUS POLLUTANTS IN AQUATIC SYSTEMS

Environmental pollution spans several chemical classes, each with distinct sources,
environmental behaviour, and toxicological relevance. The most commonly discussed
groups are heavy metals, organic pollutants, and emerging contaminants, as illustrated in

Figure 2 below. From a research perspective, especially in integrated water-sediment-biota
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studies, heavy metals, organic pollutants, and emerging contaminants are often prioritized
due to their persistence, complex speciation and strong interactions with environmental

matrices. The chemistry of different pollutants in aquatic systems is summarized in Table 1

ORGANIC EMERGING
POLLUTANTS CONTAMINANTS

HEAVY
METALS

Figure 2 Common pollutants in the environment

4.1 Heavy metals

Metals with a specific gravity exceeding 5.0 g/cm® are generally classified as heavy
metals, encompassing high-atomic-weight elements and transition metals mainly from
Groups III and IV of the periodic table (Salaudeen, 2020). These metals are environmentally
persistent and can accumulate in living organisms through contaminated food chains and
drinking water, rendering them hazardous and non-biodegradable even at trace
concentrations (Salaudeen et al., 2022; Salaudeen et al., 2025). Heavy metals represent
some of the most studied pollutants due to their toxicity, persistence, and lack of
biodegradability. The chemistry of metals in water is controlled by speciation, redox state,

complexation, and precipitation.
4.1.1 Lead (Pb)

Lead enters aquatic systems as dissolved Pb2*, inorganic complexes, and particulate-
bound forms; its partitioning between dissolved and particulate phases is controlled by pH,

ionic strength, and adsorption to suspended particles and organic matter. In oxygenated
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surface waters Pb forms stable hydroxo- and carbonate complexes, but in estuaries and
sediments, ion-exchange and sorption onto iron/manganese oxides and organic colloids
dominate its fate, producing a strong association with particulates and sediments.
Bioavailability depends on speciation and particle association; dissolved labile Pb is most
bioavailable and readily accumulated by phytoplankton, invertebrates and fish, causing
oxidative stress and neurological effects. Recent global syntheses quantify spatial patterns
and anthropogenic drivers of inland-water Pb (Wei et al., 2023). In aqueous systems, Pb?*
readily forms complexes with carbonate, sulfate, and chloride ions. Under neutral to
alkaline conditions, insoluble hydroxides and carbonates precipitate (Fitzgerald et al., 2023;

Lietal, 2021; Madlangbayan et al., 2024; Wahman et al,, 2021):
PbH** + O()?_ + — Pb(j()gb)
4.1.2 Cadmium (Cd)

Cadmium is a soft, silvery-white metal with chemical properties similar to those of
mercury and zinc. It is highly toxic and can cause severe damage to multiple organs in the
body (Salaudeen et al., 2025). Cadmium typically occurs in aquatic systems as the free ion
Cd2* and as complexes with chloride, sulfate, and dissolved organic matter; speciation shifts
with salinity and dissolved organic carbon. Cd?* is highly soluble, weakly adsorbed relative
to other divalent metals, and thus can remain mobile in freshwaters; in estuarine and
marine waters, chloride complexation increases Cd solubility while promoting different
bioavailability. In organisms, Cd competes with Ca2* and Zn2* at uptake sites, disrupting
ionoregulation and causing oxidative damage, kidney and gill pathologies in fish. Microbial
and phytoremediation approaches target Cd removal from water/sediment; detoxification
in biota often involves metallothionein induction and sequestration into inert
compartments (Farias et al., 2024). Cd?* is highly mobile under acidic conditions but
precipitates as CdCO3; or Cd(OH), under alkaline conditions. Its interactions with sulfides
are particularly relevant in reducing sediments (Ekubatsion et al., 2021; Hyun et al.,, 2021;

Song et al.,, 2022):

Cd*t + S* — CdS s
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4.1.3 Mercury (Hg)

Mercury cycles between inorganic Hg(II), elemental Hg(0), and methylated forms
(CHsHg"); the most toxic form in aquatic food webs is methylmercury (MeHg), which is
produced mainly by microbial methylation in anoxic sediments and microenvironments.
Factors controlling Hg methylation include availability of inorganic Hg, organic matter,
redox gradients, sulfate and iron cycling, and microbial community composition (hgcAB-
carrying microbes). MeHg strongly bioaccumulates and biomagnifies through trophic levels
due to slow depuration and high lipid affinity; even low environmental MeHg
concentrations lead to elevated fish tissue burdens and neurotoxic risk to predators and
humans. Recent work highlights methylation also occurring in surprising oxic
microenvironments and under changing climatic conditions (Rodriguez, 2023). Microbial
methylation of Hg?* under anaerobic conditions yields methylmercury, a potent neurotoxin
that bioaccumulates (Lu et al., 2017; Tepper et al.,, 2025; Tian et al., 2021):

Hg** » CHsHg™"

microbialmethylation

4.1.4 Arsenic (As)

Arsenic in aquatic systems occurs chiefly as inorganic arsenate (As(V)) under oxic
conditions and arsenite (As(III)) under reducing conditions, with organic As species less
abundant except in some marine organisms. Speciation controls toxicity and mobility: As(III)
is more mobile and toxic than As(V), while adsorption to iron oxides and association with
particulate matter removes As from the dissolved phase in oxic waters. Reductive
dissolution of iron minerals under anoxic conditions can release adsorbed As to porewaters,
elevating dissolved As concentrations and enabling uptake by aquatic biota.
Biotransformations (methylation, thiolation) and trophic transfer influence exposure and
ecological risk across freshwater and marine systems (Wang et al, 2022). The
interconversion between arsenite (As(IIl)) and arsenate (As(V)) is governed by redox

conditions (Castillejos Sepulveda et al., 2022; Mishra et al,, 2021; Su & Wilkin, 2020):

IIQ/LS()_: + 2e” + QII—i_ — 113_/18(_)3 + IIQO

GSW78C5D15613-11



Vol. 23
2026

ISSN:2372-0743 print

1SSN-2373-2989 on line |Nt€rnational Journal of Ground Sediment & Water

As(III) is more toxic, mobile, and poorly adsorbed compared to As(V).

The geochemistry of heavy metals thus dictates their mobility and toxicity. Sediments
and aquifer matrices act as sinks through adsorption and co-precipitation processes, but
changing conditions (e.g., acidification, reducing environments) can remobilize metals

(Baran & Tarnawski, 2015; Gao et al,, 2023; Mali et al.,, 2024).
4.2 Organic Pollutants and Transformation Mechanisms

Organic contaminants are a broad class of pollutants, including pesticides,
hydrocarbons, industrial solvents, dyes, and pharmaceuticals. Their behavior in aquatic
systems is governed by solubility, partitioning between aqueous and solid phases, and
degradation mechanisms (Bu & Ma, 2025; Mitra et al, 2024; Selwe et al,, 2022). Fate
processes include volatilization, photolysis, biodegradation (often slow), sorption to
particulate organic carbon, and trophic transfer via lipid accumulation. Partition
coefficients (Kow, Koc) predict bioaccumulation potential: high-Kow compounds
concentrate in fatty tissues and biomagnify. Temperature, dissolved organic carbon, and
sediment characteristics mediate transport and remobilization. Recent global assessments
document continued widespread occurrence and climate-linked redistribution of many

POPs despite regulatory controls (Aravind Kumar et al., 2022).
4.2.1 Hydrolysis

Many organic compounds undergo hydrolysis, where water molecules cleave chemical
bonds. For example, organophosphate pesticides such as parathion hydrolyze into less toxic

products:
Parathion + HyO — p — nitrophenol + diethylthiophosphoric.acid

The rate depends on pH, temperature, and substituents (Liu et al., 2015; Zhang et al,,
2025).

4.2.2 Oxidation and Photolysis

GSW78C5D15613-12
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Hydrocarbons and chlorinated solvents undergo oxidation through natural oxidants or

photolysis under UV light. For example:
C/YGHG +eOH — C;[,-Hg, + H,O — C@Hg()H.

This radical chain mechanism eventually mineralizes benzene to CO, and H,0, though
intermediates like phenol and catechol can persist (Jaber et al., 2020; Xu & Wang, 2013; Yin
etal., 2025).

4.2.3 Microbial Degradation

Microorganisms play a central role in organic pollutant transformation. Aerobic
microbes use oxygenases to hydroxylate hydrocarbons, while anaerobic microbes reduce

chlorinated solvents. For example, trichloroethene (TCE) can be reductively dechlorinated:
CoHCl3 + HyO + 2~ — CoHoCly + ClUT + OH™

Further stepwise dechlorination yields ethene, a non-toxic end product (Bolesch et al,,

1997; Chung et al., 2008; Hnatko et al,, 2023; Wang et al., 2024).
4.2.4 Transformation Products

A key concern is that degradation often yields metabolites that are more mobile or
toxic than the parent compound. For instance, atrazine degradation produces

deethylatrazine, which is persistent in groundwater (Chen et al,, 2019; Xie et al., 2021).

Thus, the mechanistic pathways of organic pollutant degradation illustrate the balance

between detoxification and the generation of hazardous intermediates.
4.3 Emerging Contaminants (PFAS, Pharmaceuticals, Microplastics)

Emerging contaminants (pharmaceuticals, personal care products, endocrine
disruptors, PFAS/PFAS-like substances, novel industrial chemicals) are chemically diverse
but share features: continuous release at low concentrations, varying degradability, and
potential for subtle chronic effects. PFAS are highly persistent and mobile due to C-F bonds;

many pharmaceuticals undergo partial biodegradation to active metabolites and can persist
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in effluents and receiving waters. Fate is governed by compound-specific processes —
biodegradation, hydrolysis, photolysis, sorption and volatility — and by treatment efficacy.
Environmental detection frequently relies on high-resolution mass spectrometry; One-
Health syntheses emphasize sources (wastewater, runoff, biosolids), monitoring gaps, and
the need for coordinated control and safer-by-design chemistry (Wang et al., 2024).
Emerging contaminants present unique challenges due to their persistence, complex

chemistry, and poorly understood toxicology.
4.3.1 Per- and Polyfluoroalkyl Substances (PFAS)

PFAS are characterized by strong C-F bonds (bond energy ~485 k]J/mol), making them
resistant to hydrolysis, oxidation, and biodegradation. They are amphiphilic, with
hydrophobic fluorocarbon tails and hydrophilic heads, enabling mobility in both surface

and groundwater.

Their degradation requires advanced oxidation or reduction:

CFJ(CFE),;COO_ +e W CFg(CFQ)T,__l +COy + F
SV sul fite

With a generalized degradation pathway as shown below

PFAS ——— Shorter — chain — PFAS + F~ 4+ COy
AOP/ARP

Yet these processes are energy-intensive, and incomplete defluorination produces
shorter-chain PFAS, which remain mobile and toxic (Itumoh et al., 2024; Lin et al., 2024;
Wackett, 2024)

4.3.2 Pharmaceuticals and Personal Care Products (PPCPs)

Pharmaceuticals enter water systems through wastewater effluents. They exhibit

diverse mechanisms:
e Hydrolysis of beta-lactam antibiotics:

Penicillin + HyO — Penicilloicacid
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e Photodegradation of fluoroquinolones under sunlight.

e Sorption onto sediments, which may later desorb under changing pH or ionic

strength.

Transformation products of pharmaceuticals often retain biological activity, such as

antibiotic resistance selection in microbes (Goodarzi et al., 2024; Klein et al, 2021;

Klementova et al,, 2022; Loffler et al., 2023; Zhao et al., 2022).

4.3.3 Microplastics

Microplastics (<5 mm) act as contaminants and vectors. Their hydrophobic surfaces

adsorb organic pollutants (hydrocarbons, PCBs) and heavy metals. Sorption occurs via

hydrophobic interactions, van der Waals forces, and electrostatic attraction (Frost et al.,

2022; Fuetal, 2021; Liang et al.,, 2023; Lu et al., 2022; Menéndez-Pedriza & Jaumot, 2020):

MP — COO™ + Pb** = MP — COO — Pb*

(where MP = microplastic surface)

Pv*t = Pb*t

adsorbed on microplastic

They facilitate contaminant transport across ecosystems and into organisms. In

addition, plasticizers such as bisphenol A leach out, exerting endocrine-disrupting effects.

These emerging pollutants exemplify how molecular stability and sorption

mechanisms underpin persistence, mobility, and toxicity in aquatic systems.

Table 1 Chemistry of Various Pollutants in Aquatic Systems

Pollutant Main chemical Key chemical properties/behaviour in Ref.
(class & forms/speciation aquatic systems (brief)
typical in water
compounds
)
Mercury Inorganic Hg(II) Hg(II) forms strong complexes with sulfides (Hong et
(methylmer | (dissolved and natural organic matter (NOM); under al,, 2012)
cury; complexes), anoxic/microbial conditions, Hg(II) - MeHg
inorganic elemental Hg methylates microbes. MeHg is lipophilic,
Hg(II), Hg®) | (gaseous), bioaccumulates, and biomagnifies; redox
methylmercury (photochemical and microbial) and
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(MeHg", complexation control partitioning between
organometallic water, sediment and biota.
cation)

PFAS (per- Dominant dissolved | Very low biodegradability, high persistence; (Fenton
and anionic forms at strong surfactant behaviour (high surface etal,
polyfluoroal | environmental pH activity), low sorption of short chains but 2020)
kyl (carboxylates/sulfo | stronger partitioning to organic matter for
substances nates); some neutral | long chains; mobile in water, resist
—e.g, precursors occur hydrolysis/oxidation — termed “forever
PFOA, PFOS) chemicals.”
PCBs Neutral(uncharged) | Hydrophobic (high log K_ow for higher- (Montano
(polychlorin | chlorinated chlorinated congeners), strongly sorb to etal,
ated biphenyl congeners; | sediments and particulate organic carbon; 2022)
biphenyl degree of resist biodegradation (especially highly
congeners / | chlorination (mono | chlorinated congeners); undergo slow
Aroclors) — deca) determines | dechlorination (anaerobic reductive) and
properties limited oxidation (aerobic) producing lower-

chlorinated congeners/metabolites.
Microplastic | Solid particles (nano | Polymer density, crystallinity and surface (Ivleva,
s& — micro — macro); | chemistry control transport (float/sink/near- | 2021)
associated additives bed). Weathering (UV, mechanical) produces
additives (phthalates, smaller particles and increases surface area;
(polystyrene | stabilizers) may particles sorb hydrophobic organic
, leach as dissolved contaminants (HOCs) and metals; additives
polyethylen | organics. can leach into water depending on partition
e, PVC, coefficients and polymer-matrix diffusion.
plasticizers)
Nutrients — | Dissolved inorganic: | Nitrate: conservative, highly mobile; (Howarth
Nitrogen nitrate (NO37), ammonium: sorbs/adsorbs and is & Paerl,
(NO37, NH,*) | ammonium (NH,*); | transformed (nitrification - NO, /NO;~; 2008)
& dissolved organic denitrification — N, under anoxia). Phosphate
Phosphorus | N/P; particulate strongly complexes with Fe/Al oxides and
(P0O,3) organic forms sorbs to sediments (low solubility at

circumneutral pH when bound to Fe(III)

oxides); redox and pH control release from

sediments and bioavailability.
PAHs Neutral Low water solubility (decreases with ring (Patel et
(polycyclic hydrophobic number), high log K_ow — strong sorption to al,, 2020)
aromatic organic molecules particles and sediments; subject to
hydrocarbon | (multiple fused photochemical oxidation, aerobic/anaerobic
s; e.g., aromatic rings) biodegradation (rates vary widely by
naphthalene compound), and formation of more polar
, oxygenated/nitrated PAH derivatives. Many
benzo[a]pyr PAHs are bioaccumulative and
ene) genotoxic/carcinogenic.
Antibiotics Mostly neutral or [onization state (pKa) controls sorption and (Kiimmer
& ionizable organic aqueous mobility; many are polar and er, 2009)
pharmaceuti | molecules (pKa- moderately persistent in wastewater
cals (e.g., dependent treatment effluents; undergo photolysis,
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sulfonamide | speciation), present | hydrolysis and microbial transformation to
S, as parent compound | metabolites (some retain biological activity).
fluoroquinol | + metabolites Environmental concentrations can select for
ones, antibiotic-resistance genes.
macrolides)
Lead (Pb) — | Dissolved Pb?*, Pb- | Pb solubility and speciation are strongly (Cullen &
inorganic organic complexes, | controlled by pH, redox, hardness (Ca/Mg), McAlister,
Pb(II) and adsorbed to and dissolved organic matter (complexation). | 2017)
particulate particles/sediment, | Lower pH and low DOC usually increase free
Pb species particulate Pb?* (more bioavailable/toxic); Pb strongly
oxide/hydroxide partitions to particles and sediments and can
forms be remobilized under changing geochemistry.

5.0 POLLUTION MECHANISMS
5.1 Geochemical mechanisms
5.1.1 Adsorption

Adsorption involves the attachment of contaminants onto mineral surfaces such as
clays, iron and manganese oxides, and organic matter present in sediments and aquifers
(Mary Ugwu & Anthony Igbokwe, 2019; Molina-Fernandez et al., 2025; Wang et al., 2023; Y.
Wang et al., 2020). Factors such as pH, redox potential, ionic strength, and competing ions
influence adsorption capacity. For example, heavy metals (Pb?*, Cd**, As3*) adsorb strongly
to ferric hydroxides under oxidizing conditions, reducing their mobility. Conversely,
changes such as acidification or reducing environments can cause desorption and

remobilization of contaminants (Fernandes et al., 2025; Yang et al., 2025).

5.1.2 Precipitation and Co-precipitation

Contaminants may precipitate as insoluble mineral phases (e.g., PbCO3, FePO,) or co-
precipitate within mineral lattices. Uranium can precipitate as uranyl phosphate under
phosphate-rich conditions, while arsenic co-precipitates with iron hydroxides, immobilizing
these contaminants. However, these precipitates may dissolve under shifting environmental

parameters (Almeida et al., 2020; Foster et al.,, 2020; Jain & Maiti, 2021).
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5.1.3 Redox Reactions

Redox conditions are a primary control on contaminant speciation and mobility. For
instance, arsenic is more mobile under reducing conditions as arsenite (As**), which is
released from iron oxides, while chromium exists as mobile Cr(VI) under oxidizing
conditions but reduces to less toxic Cr(IIlI) in the presence of organic matter or Fe(II)
(Brookshaw et al, 2014; Kim et al, 2019; Sun et al, 2022). These redox-driven

transformations are critical at redox interfaces in aquatic systems.
5.1.4 Complexation

The formation of complexes with natural organic matter, ligands, or inorganic ions
influences contaminant behavior. Metal-organic complexes (e.g., Cu-humate) increase
solubility and mobility, affecting bioavailability and toxicity (Cai et al., 2024; Qin et al,
2024).

5.2 Biochemical mechanisms
5.2.1 Microbial Degradation

Microorganisms drive the biodegradation of organic contaminants through aerobic and
anaerobic pathways. Aerobic degradation uses oxygen as the terminal electron acceptor to
oxidize compounds such as petroleum hydrocarbons, while anaerobic degradation employs
nitrate, sulfate, Fe(Ill), or CO, for respiration, transforming contaminants like chlorinated

solvents via reductive dichlorination (Li, Chen, et al., 2022; Li et al., 2024; Miles et al., 2024).
5.2.2 Biotransformation and Biosorption

Microbial metabolism can convert contaminants into less toxic or more mobile forms.
For example, mercury methylation by anaerobic bacteria produces methylmercury, a more
bioaccumulative species (Pu et al, 2025). Biosorption involves binding contaminants to

microbial biomass, temporarily immobilizing metals.

5.2.3 Biomineralization
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Microbes can induce mineral precipitation that sequesters contaminants. Sulfate-
reducing bacteria produce sulfide ions, precipitating metals as insoluble metal sulfides (e.g.,
PbS, ZnS), a key attenuation process in acid mine drainage and metal-contaminated aquifers

(Dong et al., 2024; Marques & Rodrigues, 2025).
5.3 Coupled geochemical-biochemical interactions

Geochemical and biochemical processes often occur simultaneously and interact
synergistically or antagonistically. For example, microbial iron reduction dissolves Fe(IlI)
oxides, releasing sorbed arsenic into groundwater, while microbial sulfate reduction
immobilizes metals as sulfides (Nghiem et al., 2023; Wu et al,, 2024). This interplay results

in spatial and temporal heterogeneity of contaminant fate in aquatic environments.

Contaminant behavior in aquatic systems is governed by integrated geochemical and
biochemical processes influenced by environmental conditions such as pH, redox potential,
and microbial communities. Understanding these processes is critical for accurate
prediction of contaminant fate and the design of remediation strategies. Future research
should emphasize mechanistic models and in situ monitoring to capture these complex

dynamics.
6.0 CASE STUDIES OF DIFFERENT POLLUTANTS IN AQUATIC SYSTEMS

Kabwe is one of the world’s most-cited modern case studies of mining-derived lead
contamination. Historical lead-zinc mining and ore processing released large quantities of
Pb-rich dust and tailings across the town and into nearby drainages, producing pervasive
soil and surface-water contamination and chronic childhood lead exposure. Community
surveys and environmental monitoring document extremely high blood lead concentrations
in children, contamination of river sediments and floodplain soils, and ongoing exposure
pathways via dust resuspension and locally grown foodstuffs. Recent analyses quantify the
social and public-health costs and discuss remediation options (soil stabilization, targeted
cleanups, and community interventions) as essential but resource-intensive measures to

reduce long-term exposure (Yamada et al., 2023).
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Pb?* sorbs onto clay and organic matter at neutral pH can be mobilized under acidic

mine drainage conditions:
= COOH + P¥*" ==C00 - Pb* + H*
When pH drops, protonation weakens sorption, enhancing Pb** leaching.

Cadmium pollution in Japan’s Jinzu River basin historically produced the classic itai-itai
disease epidemic (mid-20th century), caused by Cd discharged from upstream mining into
irrigation waters and rice paddies. Contemporary case reports show that cadmium hotspots
persist in parts of Japan (and are detected elsewhere where former mining or industrial
discharge occurred), producing renal tubular dysfunction, bone demineralization, anemia
and fractures in long-exposed residents. Modern clinical follow-up, biomonitoring and a
recent suspected itai-itai case from an Akita prefecture Cd-polluted area underscore that
legacy cadmium in soils and sediments continues to produce human disease decades after
emissions decline, and that sustained health surveillance plus remediation of agricultural

soils remain priorities (Sasaki et al., 2024).

Artisanal and small-scale gold mining (ASGM) in Amazonian Andean foothills and
lowlands releases elemental mercury that biomagnifies as methylmercury in river food
webs. Recent regional studies report elevated Hg in stream waters, sediments, fish and
human biomarkers (hair/blood) from mining-impacted provinces in Ecuador and from
indigenous communities in the Brazilian Amazon; health risk assessments detect elevated
exposure, particularly in children and frequent fish consumers. Field monitoring and
probabilistic risk estimates identify hotspots tied to illegal mining activity, with
recommendations for combined strategies: source-control (anti-mining enforcement,
mercury-free techniques), fish-consumption advisories, ecosystem monitoring and targeted
public-health screening to address neurodevelopmental risks (Mestanza-Ramon et al., 2023;

Passarelli et al., 2024).

The Bengal Basin groundwater arsenic crisis remains a paradigmatic geogenic
contamination case. Elevated inorganic arsenic (often as arsenite, As(IIl)) occurs in shallow

Holocene alluvial aquifers across Bangladesh and parts of West Bengal; reductive
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dissolution of As-bearing iron oxyhydroxides coupled with organic matter and microbial
processes mobilizes arsenic into potable wells and irrigation water. Recent reviews and
hydrogeochemical studies map persistent high-As zones, describe depth-dependent
patterns and food-chain transfer (e.g., rice irrigated with As-rich groundwater), and
evaluate mitigation options such as alternative safe wells, in-situ treatment, and irrigation
management. Policy and remediation remain challenging because contamination is
widespread, spatially heterogeneous, and driven by natural geochemistry as well as

anthropogenic water-use patterns (Kanel et al., 2023; Sarkar et al., 2022).

Groundwater arsenic contamination in Bangladesh and India illustrates the interplay of
redox and microbial processes. Arsenate (As(V)) is reduced to arsenite (As(III)) by iron-

reducing bacteria in anoxic aquifers, releasing arsenic from Fe-oxyhydroxides:
Reductive dissolution of Fe(III) oxyhydroxides (primary release mechanism)
Fe(OH)s) + ¢ +3H" — Fet + 3H,0
Reduction of arsenate to arsenite
HyAsOy + 2e” + 2H' — H3AsO5 + Hy0

Coupled conceptual pathway

Fe(I1II) — oxyhydroxide — As(V) — » Fe(II)+ As(1I1)
te—Treaucing hacteria
This mechanism explains why tube wells show high As(IIl) concentrations despite

remediation efforts (Diba et al., 2023; Sathe et al., 2021).

Long-lived organic contaminants illustrate two global archetypes. In the Hudson River
(USA), decades of PCB discharge produced extensive PCB-contaminated sediments,
persistent bioaccumulation in fish, food-web transfer and ecological impacts; post-dredging
monitoring and fish-advisories remain central components of remediation and risk
management. Separately, the 2020 MV Wakashio grounding and fuel-oil release off
Mauritius released complex low-sulfur fuel oil with hydrocarbon fractions (including PAHs)

that contaminated mangroves, sediments and coastal biota; subsequent studies document
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residual hydrocarbons, ecosystem damage, and the importance of rapid response, long-
term monitoring, and habitat restoration after oil incidents. Both cases show that organic
pollutants demand sediment-and-biota-focused assessment plus long timelines for recovery

(Sathe et al.,, 2021; Wirgin et al,, 2023).

Per- and polyfluoroalkyl substances (PFAS) are exemplary “emerging” persistent
contaminants. The Cape Fear watershed (North Carolina) documented GenX and complex
PFAS mixtures from fluorochemical production: downstream river and drinking-water
intakes contained numerous PFAS congeners, prompting exposure studies, regulatory
action and engineered source controls. Broader groundwater and national surveys show
widespread PFAS detections (many sites and private wells), with predictive models
highlighting likely occurrence at drinking-water depths. Case studies emphasize source
attribution (manufacturing, firefighting foams, wastewater), challenges in detecting novel
PFAS, the need for advanced treatment (e.g., granular activated carbon, ion exchange,
advanced oxidation) and the policy/monitoring frameworks required to manage large

numbers of related compounds (Pétré et al., 2022; Scarlett et al., 2021).

PFAS contamination from firefighting foams illustrates persistence due to strong C-F
bonds. Mechanistic studies show partial degradation via reductive defluorination under

UV /sulfite treatment:

C?F]SC/“O()_ + e W C;TF]S LJ —l—(;()g
TV /sul fite

Followed by subsequent defluorination
Cj7F15 o + Hy— C/YGF]S o +F +HF

However, the process is incomplete, generating shorter-chain PFAS with similar

mobility (Abusallout et al.,, 2021; Ren et al., 2021)

Microplastics in European rivers adsorb hydrophobic organics (PAHs, PCBs) and
metals, transporting them downstream. Mechanistic models attribute sorption to

hydrophobic partitioning andn-m interactions between plastic polymers and aromatic
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pollutants (Agboola & Benson, 2021; Prajapati et al., 2022; Tumwesigye et al., 2023; Wang
etal., 2024).

These case studies reveal how mechanistic understanding supports prediction and

remediation strategies in real-world polluted sites.

Table 2 Case studies of different pollutants in aquatic systems

Pollutant | Location / | Matrix Key Findings / Summary Year Ref
(type) Case Studied
Study
Mercury Minamata | Fish, Industrial discharge of methylmercury | 1950s— | (Semion
(methylm | Bay, sediments, | from acetaldehyde production caused | present | ov,
ercury) Japan and human | widespread neurotoxicity (“Minamata 2018)
tissues disease”). Methylmercury
bioaccumulates in  fish and s
biomagnified through the food web.
Crude oil | Deepwate | Water Approximately 4.9 million barrels of oil | 2010 (Barron,
(petroleu | r Horizon | column, were released; polycyclic aromatic 2012)
m Oil  Spill, | deep-sea hydrocarbons (PAHs) caused chronic
hydrocarb | Gulf of | corals, toxicity and long-term ecological
ons) Mexico coastal disruption.
sediments,
biota
Polychlori | Hudson Sediments, | Discharge from GE capacitor plants led | 1940s— | (Carpen
nated River, USA | fish, to one of the world’s largest PCB- | present |ter &
Biphenyls floodplain contaminated river systems. Strong Welfing
(PCBs) soils sediment sorption and slow er-Smit
dechlorination led to decades-long h, 2011)
contamination and remediation efforts.
Perfluoroo | Mid-Ohio | Drinking Chronic exposure from industrial | 2000s— | (Vieira
ctanoic Valley, water, discharges; strong persistence and | 2013 et al,
Acid USA serum, mobility in water. Epidemiological 2013)
(PFOA) groundwat | evidence links exposure to
er kidney/testicular cancers and thyroid
disorders.
Nutrients | Chesapea | Surface Agricultural and wastewater nutrient | 2001- (Testa
(Nand P) ke Bay, | and inputs cause eutrophication, algal | 2014 et al,
USA bottom blooms, and seasonal hypoxia. 2014)
waters Modelling studies link nutrient load
reductions to improved dissolved
oxygen levels.
Microplast | Yangtze Surface High abundance of polyethylene and | 2023—- (S.
ics River water and | polypropylene microplastics; major | 2024 Wang
Basin, sediments | sources include wastewater and urban et al,
China runoff. Microplastics act as vectors for 2024)
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heavy metals and hydrophobic organic
contaminants.
Antibiotics | Ganges Water, High concentrations of antibiotics | 2013— (S. Li et
and River, sediment, (ciprofloxacin, sulfamethoxazole, etc.) | 2023 al.,
Pharmace | India / | microbial and antibiotic resistance genes from 2022)
uticals Global communiti | wastewater inputs. Rivers serve as
Rivers es hotspots for AMR dissemination.
Mercury Madre de | Soil, water, | Atmospheric and waterborne mercury | 2018— (Gerson
from Dios, and biota emissions from ASGM lead to | 2023 et al,
Artisanal Peruvian accumulation in forest canopies and 2022)
Gold Amazon aquatic food webs, causing widespread
Mining MeHg bioaccumulation.
(ASGM)

7.0 HUMAN HEALTH AND ECOLOGICAL IMPACTS

Contaminants in surface and groundwater exert both direct toxicological effects and

indirect ecological disruptions.
7.1 Health impacts

Lead interferes with calcium metabolism, impairing neurological function through

substitution at calcium-binding sites:
Ca — Protein + Pb** = Pb— Protein + Ca*"

This substitution mechanism underlies neurotoxicity, impaired synaptic transmission,
and bone accumulation (Tobalu & Enogieru, 2025). Cadmium complexes with thiol groups
in proteins, impairing kidney function, promoting oxidative stress, and disrupting calcium
signaling, which contributes to bone demineralization (Yan & Allen, 2021). Mercury
methylation produces methylmercury, a neurotoxin that bioaccumulates in fish and

biomagnifies in food webs, posing dietary risks (Jeong et al., 2024).

Pesticides inhibit enzymes—most notably, organophosphates block

acetylcholinesterase (AChE):

AChE — Ser — OH + Organophosphate — AChE — Ser — O — P(= O)R
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AChE = Acetylcholinesterase, Ser = Serine residue, AChE-Ser-OH = Active (native)
acetylcholinesterase, AChE-Ser-0-P(=0)R = Phosphorylated (inhibited)

acetylcholinesterase

Organophosphates form stable covalent bonds with AChE, preventing
neurotransmitter breakdown and causing neurotoxicity (Toropova et al., 2023). PFAS bind
strongly to serum albumin, altering lipid transport, endocrine regulation, and liver function
(Zhao et al., 2023). Pharmaceuticals discharged into aquatic ecosystems disrupt microbial
communities, facilitating the spread of antibiotic resistance genes (Swiacka et al., 2023).
Microplastics not only cause physical blockage in aquatic species but also act as vectors for
hydrophobic pollutants and metals, enhancing their bioavailability and toxicological impact

in higher trophic levels (Parashar et al,, 2023; Wu et al., 2024).
7.2 Ecological Disruptions
Aquatic ecosystems face multiple stressors:
o Altered redox balance from organic pollutant degradation — hypoxia.
¢ Bioaccumulation of metals in fish and benthic organisms — trophic transfer.

e Endocrine disruption by pharmaceuticals and microplastics — reproductive

impairments in fish and amphibians.

Mechanistically, these effects derive from the molecular-level interactions between

pollutants and biological systems, linking environmental chemistry with toxicology.
7.3 Risk Assessment and Predictive Models

Risk assessment integrates chemical data, exposure pathways, and toxicological
thresholds to evaluate threats posed by contaminants in surface and groundwater. The

mechanistic understanding of contaminant chemistry is essential for accurate modeling.

7.4 Human Health Risk Assessment (HHRA)
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Risk is quantified through hazard quotient (HQ) and carcinogenic risk (CR) values,

based on contaminant concentration, exposure, and toxicity reference values.

C XIRX EF X ED
RfD X BW X AT

HQ =

Where:

C = contaminant concentration; IR = ingestion rate; EF = exposure frequency; ED =

exposure duration
RfD = reference dose; BW = body weight; AT = averaging time

Mechanistically, the toxicity values (RfD, slope factor) derive from dose-response
relationships demonstrated such risk calculations for Pb and Cd in polluted soils and their

leachates.
7.5 Ecological Risk Assessment (ERA)

ERA incorporates species sensitivity distributions (SSDs), modeling contaminant
effects across multiple taxa. For instance, LCso values for fish exposed to methylmercury

inform protective threshold concentrations.
7.6 Predictive Geochemical Models
Models such as PHREEQC simulate aqueous speciation, adsorption, and precipitation:

e Pb?* partitioning between aqueous and solid phases is predicted by equilibrium

constants.
e Arsenic mobility modeled through surface complexation reactions.

Reactive transport models couple hydrodynamics with geochemical Kkinetics,
predicting contaminant plumes. Mechanistic redox pathways (e.g., Fe reduction releasing As)

are embedded in such models to improve predictions (Tufenkji et al.,, 2022).
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Risk assessment frameworks, therefore, rely on the integration of contaminant
chemistry and transport mechanisms to identify high-risk scenarios and guide remediation

priorities.
8.0 CONCLUSION

The chemistry and mechanisms of contaminants in surface and groundwater define
their environmental persistence, ecological risks, and health impacts. This review has
highlighted the complex interplay of geochemical and biochemical processes — adsorption,
redox transformations, hydrolysis, microbial degradation, and complexation — that govern
contaminant fate at polluted sites. Heavy metals such as Pb, Cd, Hg, and As exhibit
speciation-dependent toxicity, with redox and sorption dynamics controlling their mobility.
Organic pollutants, including pesticides, hydrocarbons, and solvents, undergo hydrolysis,
photolysis, and microbial degradation, often yielding toxic intermediates. Emerging
contaminants such as PFAS, pharmaceuticals, and microplastics challenge existing

remediation strategies due to their structural stability, amphiphilicity, and vector roles.

Mechanistic insights demonstrate that environmental chemistry provides predictive
capacity: speciation models anticipate contaminant behavior under varying geochemical
conditions, while toxicological mechanisms explain health impacts ranging from
neurotoxicity to endocrine disruption. Risk assessment frameworks integrate these
mechanistic details, supporting site-specific evaluations. Case studies across Asia, Africa,
Europe, and North America illustrate how mechanistic understanding explains observed
contamination patterns, from arsenic mobilization in South Asia to PFAS persistence in

military sites.

Ultimately, the chemistry and mechanisms of contaminant behavior must remain
central in monitoring, modeling, and remediation strategies. Bridging environmental
chemistry with toxicology, risk science, and engineering is essential for sustainable
management of polluted sites and protection of water resources. Future research should
emphasize integrated mechanistic models and emerging contaminants, ensuring proactive

rather than reactive responses to contamination challenges.
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