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Abstract: The contamination of surface and groundwater by chemical pollutants poses a 

major global challenge, threatening ecological balance, human health, and sustainable water 

resources. Pollutants, including heavy metals, organic compounds, nutrients, 

pharmaceuticals, per- and polyfluoroalkyl substances (PFAS), and microplastics, infiltrate 

aquatic systems through industrial discharges, mining, agriculture, and urban runoff. Their 

persistence, transformation, and mobility are governed by complex chemical and biological 

mechanisms, such as adsorption, precipitation, complexation, redox reactions, and 

microbial biodegradation. For instance, arsenic undergoes redox cycling between As(III) 

and As(V), mercury is transformed into toxic methylmercury, while lead forms insoluble 

hydroxides or carbonates depending on pH and carbonate concentrations. Similarly, 

organic pollutants undergo hydrolysis, photolysis, and microbial degradation, though many 

yield toxic intermediates. Emerging contaminants like PFAS resist degradation due to 

strong C–F bonds, while microplastics act as carriers for hydrophobic organics and metals. 

Mechanistic insights are vital for understanding toxicity, such as cadmium-induced 

oxidative stress, lead interference with neurotransmission, and endocrine disruption by 
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organics. This review synthesizes recent advances in the chemistry and mechanisms 

governing contaminant behavior in surface and groundwater. It highlights the mechanistic 

underpinnings of pollutant fate, health effects, and remediation technologies, emphasizing 

the need for integrated, interdisciplinary approaches to safeguard water quality and 

ecosystem health. 

 

Keywords: Surface water; Groundwater contamination; Heavy metals; Emerging pollutants; 

Mechanisms. 

 
1.0 Introduction 
 

Water is an indispensable natural resource, vital for sustaining life, agricultural 

productivity, industrial processes, and ecological integrity. However, the contamination of 

freshwater resources—both surface and groundwater—has emerged as one of the most 

pressing environmental concerns of the 21st century. The growing release of contaminants 

and pollutants into aquatic systems has been driven by rapid industrialization, urbanization, 

agricultural intensification, and population growth (Ihenetu et al., 2024; Lapworth et al., 

2023; Ubuoh et al., 2023). Polluted sites, whether associated with mining, industrial 

effluents, landfills, or agricultural hotspots, serve as point and non-point sources of diverse 

contaminants that compromise water quality and threaten human and ecosystem health 

(Kalmakhanova et al., 2025; Okoro et al., 2023). 

Groundwater, often regarded as naturally protected, is increasingly vulnerable to 

contamination due to the infiltration and percolation of pollutants from surface activities. 

Surface water bodies such as rivers, lakes, and wetlands, meanwhile, receive direct 

discharges of untreated or poorly treated effluents. Collectively, these processes result in 

the accumulation of contaminants including heavy metals (lead, cadmium, mercury, 

arsenic), nutrients (nitrate, phosphate), organic pollutants (pesticides, industrial solvents, 

hydrocarbons), and emerging pollutants such as pharmaceuticals, microplastics, and PFAS 

(Alvarado-Zambrano et al., 2023; Ubuoh et al., 2023). A critical dimension of understanding 

the impacts of contaminants lies in the chemistry and mechanisms underlying their 
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environmental behavior. For example, arsenic mobility in groundwater is strongly 

influenced by redox transformations: 

 

This reduction increases toxicity and solubility, exacerbating risks to human health 

(Gao et al., 2020; Han et al., 2019; Li, Bundschuh, et al., 2022; Zhang, Xie, et al., 2023). 

Similarly, the precipitation of lead as insoluble hydroxide can be expressed as: 

 

Such geochemical processes determine whether pollutants persist in soluble forms or 

are immobilized in sediments. Organic contaminants exhibit complex transformation 

pathways, undergoing hydrolysis, photolysis, and oxidation, often forming intermediate 

metabolites that can be equally or more toxic than their parent compounds (Mitra et al., 

2024a; Shi et al., 2023; Yang et al., 2025). Pharmaceuticals, for instance, degrade through 

hydroxyl radical attack in advanced oxidation processes: 

 

Yet incomplete mineralization results in persistent byproducts (Hama Aziz et al., 2025; 

Kanakaraju et al., 2025; Zhang, Guo, et al., 2023). Emerging pollutants introduce additional 

challenges. PFAS resist degradation due to strong carbon–fluorine (C–F) bonds, making 

them virtually non-biodegradable (Wackett, 2024; Zhang et al., 2022). Microplastics serve 

as both pollutants and vectors, adsorbing hydrophobic organic contaminants and heavy 

metals onto their surfaces, thus facilitating co-transport into aquatic systems (Adeleye et al., 

2024; Pal et al., 2024). 

The mechanistic toxicology of these contaminants reveals profound health impacts. 

Lead disrupts neurotransmission by mimicking calcium and interfering with synaptic 

signaling (de Souza et al., 2019; Liu et al., 2021). Cadmium generates oxidative stress by 

producing reactive oxygen species (ROS) that damage proteins and DNA (Branca et al., 2020; 

Salaudeen et al., 2025). Mercury undergoes microbial methylation to form methylmercury, 

which bioaccumulates and biomagnifies in food chains, posing neurological risks (Kang et 
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al., 2024; Lavoie et al., 2013). Similarly, nitrates in drinking water are reduced in the human 

body to nitrites, which can form carcinogenic N-nitrosamines under acidic gastric 

conditions (Picetti et al., 2022; Ward et al., 2005). Beyond health, contaminants profoundly 

affect aquatic ecosystems. Excessive nutrient inputs trigger eutrophication, resulting in 

harmful algal blooms, oxygen depletion, and fish mortality (San Diego-McGlone et al., 2024). 

Persistent organic pollutants disrupt endocrine systems in aquatic organisms, leading to 

reproductive and developmental abnormalities (Ibor et al., 2023; Peskova & Bladhova, 

2025). 

The significance of reviewing the chemistry and mechanisms of contaminants in 

polluted sites cannot be overstated. Mechanistic knowledge informs risk assessment, 

enhances predictive models of contaminant transport, and underpins the development of 

effective remediation technologies (Burgess et al., 2023; Khalifa et al., 2024; Samborska-

Goik & Pogrzeba, 2024). This review synthesizes recent advances (2020–2025) in 

contaminant chemistry, transport mechanisms, toxicology, and remediation, with a focus on 

both surface and groundwater systems. By bridging geochemistry, environmental 

chemistry, and mechanistic toxicology, this work aims to provide a comprehensive 

perspective on the threats posed by contaminants and the scientific basis for sustainable 

water protection. 

2.0 METHODOLOGY 

This review was developed through a systematic and integrative literature synthesis 

approach. Peer-reviewed journal articles, conference proceedings, and authoritative reports 

published between 2020 and 2025 were prioritized to ensure currency and relevance. 

Databases including Scopus, Web of Science, ScienceDirect, and PubMed were queried using 

combinations of keywords such as surface water contamination, groundwater pollution, 

pollutant chemistry, mechanistic toxicology, and remediation technologies. 

The inclusion criteria were: (i) studies addressing the occurrence, chemistry, 

mechanisms, or impacts of pollutants in surface or groundwater; (ii) mechanistic studies 

describing transformation pathways (e.g., redox, adsorption, microbial degradation); and 
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(iii) studies reporting environmental or health implications of pollutants. Exclusion criteria 

included studies without a mechanistic focus or those limited to modeling without 

chemical/biochemical interpretation. 

The final pool of literature was critically analyzed, synthesized, and organized 

thematically into major contaminant classes and mechanisms. Emphasis was placed on 

chemical equations, mechanistic pathways, and toxicological processes in explanatory 

contexts. This ensured a balanced perspective that integrates fundamental chemistry, 

environmental processes, toxicological endpoints, and remediation strategies. 

3.0 SOURCES AND CLASSES OF CONTAMINANTS 

Contaminants entering aquatic systems originate from both natural and anthropogenic 

activities. Natural processes such as weathering of rocks, volcanic eruptions, and 

biogeochemical cycling contribute arsenic, fluoride, and other trace metals to groundwater 

(Bianchini et al., 2020; Chandrajith et al., 2020; Mustafa et al., 2023; Raju, 2022). However, 

anthropogenic activities are the dominant drivers of pollution in modern systems, as shown 

in Figure 1.  

 
Figure 1 Sources of contaminants in aquatic systems 

 
3.1 Industrial sources 

Effluents from textile, tannery, pharmaceutical, chemical, and mining industries release 

heavy metals (e.g., Pb²⁺, Cd²⁺, Cr³⁺), solvents, hydrocarbons, and complex organics 

(Christian et al., 2023; Matebese et al., 2024; Okoro et al., 2023; Oladimeji et al., 2024; 



ISSN:2372-0743 print 
International Journal of Ground Sediment & Water 

Vol. 23 
ISSN:2373-2989 on line 2026 

 

GSW78C5D15613-6 
 

Saravanakumar et al., 2022; Zhao et al., 2022). Industrial activities are major contributors to 

the release of a wide range of emerging contaminants (ECs) into environmental media, 

particularly aquatic systems. These contaminants include pharmaceuticals and personal 

care products, per- and polyfluoroalkyl substances (PFAS), industrial solvents, flame 

retardants, and endocrine-disrupting chemicals that are not always effectively removed by 

conventional wastewater treatment systems. Chemical manufacturing processes and the 

pharmaceutical industry discharge active pharmaceutical ingredients (APIs), synthesis by-

products, and transformation products into wastewater, which can persist in the 

environment due to their chemical stability and resistance to degradation (Li et al., 2025). 

Similarly, textile and dyeing industries contribute synthetic dyes and surfactants, while 

electronics and fluorochemical manufacturing plants release PFAS and specialty metal-

organic compounds, which can accumulate in water bodies and sediments (Yusuf et al., 

2021). In many cases, industrial effluents contain complex mixtures of contaminants that 

are not captured in regulatory monitoring programs and therefore continue to pose 

ecological and human health risks (Samal et al., 2022). This pervasive industrial input 

underscores the need for improved regulatory frameworks and advanced treatment 

technologies designed to monitor and mitigate industrial EC sources. 

3.2 Agricultural inputs 

Excessive fertilizer and pesticide use introduce nitrates, phosphates, and 

organophosphates into groundwater and surface water. The classic pathway of nitrate 

contamination occurs via:  

  (Nitrification) 

Nitrates leach into aquifers, elevating risks of methemoglobinemia and carcinogenic 

nitrosamine formation (Hagage et al., 2025; Rotiroti et al., 2023). 

Modern agricultural systems are significant contributors to the release of emerging 

contaminants (ECs) into the environment. These contaminants include veterinary 

pharmaceuticals, antibiotics, pesticides, hormones, microplastics, and other organic 

pollutants that are not fully regulated or routinely monitored but have been increasingly 
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detected in soils, water bodies, and food crops. Veterinary medicines and antibiotics 

administered to livestock can enter agricultural soils directly through grazing or indirectly 

when manure and slurry from intensive animal production are applied as fertilisers, leading 

to residues in soil and runoff into surface and groundwater bodies (Tillitt & Buxton, 2012). 

Pesticides and herbicides, widely used to control pests and weeds, can persist in the 

environment, migrate via runoff and leaching, and adversely affect non-target organisms 

and ecosystem health (Nwankwo et al., 2025). The use of biosolids and treated wastewater 

for irrigation also introduces pharmaceuticals, hormones, and personal care products into 

farmlands, resulting in the accumulation of these compounds in soil and uptake by plants 

(Sardar et al., 2025). Additionally, microplastics and nanomaterials derived from 

agricultural plastics, mulching films, and soil amendments are increasingly recognised as 

emerging pollutants that alter soil properties and potentially facilitate transport of other 

contaminants. Collectively, these agricultural sources contribute to a complex mixture of 

ECs in agroecosystems, posing ecological risks and potential human health concerns 

through food chain transfer, contamination of water resources, and disruption of soil 

microbial communities. 

3.3 Urban and domestic sources 

Sewage, landfill leachates, and stormwater runoff discharge pharmaceuticals, 

microplastics, surfactants, and endocrine-disrupting compounds (EDCs) (Peter et al., 2024; 

Werbowski et al., 2021; Wilkinson et al., 2022). Urban and domestic activities are major 

contributors to the release of emerging contaminants (ECs) into aquatic environments 

through multiple pathways. A significant source is municipal and household wastewater, 

which carries pharmaceuticals and personal care products (PPCPs) such as analgesics, 

antibiotics, fragrances, and sunscreen agents that enter sewer systems through human use 

and improper disposal (AL Falahi et al., 2022). These contaminants often bypass or are 

partially removed by conventional wastewater treatment plants (WWTPs), ultimately being 

discharged into rivers, lakes, and coastal waters, where they persist due to their chemical 

stability and resistance to degradation (Yuan et al., 2025). Domestic sewage and greywater 

from residential areas also contribute household chemicals and surfactants into the urban 
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water cycle, including detergents, disinfectants, and endocrine-active compounds (Zillien et 

al., 2022). Additionally, urban stormwater runoff transports ECs from impervious surfaces 

such as roads, roofs, and parking lots into water bodies; these include pesticides, vehicle-

derived hydrocarbons, microplastics, and PPCPs from everyday human activities (Mutzner 

et al., 2023). The combination of dense population, extensive wastewater networks, and 

inadequate removal of trace organic contaminants makes urban and domestic sources key 

drivers of EC presence in the environment, posing ecological and human health risks due to 

long-term exposure even at trace concentrations.  

3.4 Emerging contaminants  

PFAS, pharmaceuticals, personal care products, and nanomaterials represent new 

classes of pollutants with poorly understood long-term mechanisms (Lyu et al., 2022; Peter 

et al., 2024; Wilkinson et al., 2022). 

Pollutants may exist as dissolved ions, complexes, particulates, or sorbed phases, and 

their distribution depends on environmental conditions such as pH, redox potential (Eh), 

ionic strength, and organic matter content. Understanding their chemical speciation is 

critical because toxicity, mobility, and persistence are governed by these forms. For 

example, hexavalent chromium (Cr(VI)) is highly mobile and toxic, while trivalent 

chromium (Cr(III)) tends to precipitate or adsorb to surfaces (Arp & Hale, 2022; Dvoynenko 

et al., 2021; Rapljenović et al., 2024; Zulfiqar et al., 2023): 

 

Thus, the classification of contaminants not only reflects their origin but also their 

chemical mechanisms of persistence, transformation, and impact. 

4.0 CHEMISTRY OF VARIOUS POLLUTANTS IN AQUATIC SYSTEMS  

Environmental pollution spans several chemical classes, each with distinct sources, 

environmental behaviour, and toxicological relevance. The most commonly discussed 

groups are heavy metals, organic pollutants, and emerging contaminants, as illustrated in 

Figure 2 below. From a research perspective, especially in integrated water-sediment-biota 
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studies, heavy metals, organic pollutants, and emerging contaminants are often prioritized 

due to their persistence, complex speciation and strong interactions with environmental 

matrices. The chemistry of different pollutants in aquatic systems is summarized in Table 1 

 
Figure 2 Common pollutants in the environment 

 

4.1 Heavy metals 

Metals with a specific gravity exceeding 5.0 g/cm³ are generally classified as heavy 

metals, encompassing high-atomic-weight elements and transition metals mainly from 

Groups III and IV of the periodic table (Salaudeen, 2020). These metals are environmentally 

persistent and can accumulate in living organisms through contaminated food chains and 

drinking water, rendering them hazardous and non-biodegradable even at trace 

concentrations (Salaudeen et al., 2022; Salaudeen et al., 2025). Heavy metals represent 

some of the most studied pollutants due to their toxicity, persistence, and lack of 

biodegradability. The chemistry of metals in water is controlled by speciation, redox state, 

complexation, and precipitation. 

4.1.1 Lead (Pb) 

Lead enters aquatic systems as dissolved Pb2⁺, inorganic complexes, and particulate-

bound forms; its partitioning between dissolved and particulate phases is controlled by pH, 

ionic strength, and adsorption to suspended particles and organic matter. In oxygenated 
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surface waters Pb forms stable hydroxo- and carbonate complexes, but in estuaries and 

sediments, ion-exchange and sorption onto iron/manganese oxides and organic colloids 

dominate its fate, producing a strong association with particulates and sediments. 

Bioavailability depends on speciation and particle association; dissolved labile Pb is most 

bioavailable and readily accumulated by phytoplankton, invertebrates and fish, causing 

oxidative stress and neurological effects. Recent global syntheses quantify spatial patterns 

and anthropogenic drivers of inland-water Pb (Wei et al., 2023). In aqueous systems, Pb²⁺ 

readily forms complexes with carbonate, sulfate, and chloride ions. Under neutral to 

alkaline conditions, insoluble hydroxides and carbonates precipitate (Fitzgerald et al., 2023; 

Li et al., 2021; Madlangbayan et al., 2024; Wahman et al., 2021): 

 

4.1.2 Cadmium (Cd) 

Cadmium is a soft, silvery-white metal with chemical properties similar to those of 

mercury and zinc. It is highly toxic and can cause severe damage to multiple organs in the 

body (Salaudeen et al., 2025). Cadmium typically occurs in aquatic systems as the free ion 

Cd2+ and as complexes with chloride, sulfate, and dissolved organic matter; speciation shifts 

with salinity and dissolved organic carbon. Cd2+ is highly soluble, weakly adsorbed relative 

to other divalent metals, and thus can remain mobile in freshwaters; in estuarine and 

marine waters, chloride complexation increases Cd solubility while promoting different 

bioavailability. In organisms, Cd competes with Ca2+ and Zn2+ at uptake sites, disrupting 

ionoregulation and causing oxidative damage, kidney and gill pathologies in fish. Microbial 

and phytoremediation approaches target Cd removal from water/sediment; detoxification 

in biota often involves metallothionein induction and sequestration into inert 

compartments (Farias et al., 2024). Cd2+ is highly mobile under acidic conditions but 

precipitates as CdCO₃ or Cd(OH)₂ under alkaline conditions. Its interactions with sulfides 

are particularly relevant in reducing sediments (Ekubatsion et al., 2021; Hyun et al., 2021; 

Song et al., 2022): 
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4.1.3 Mercury (Hg) 

Mercury cycles between inorganic Hg(II), elemental Hg(0), and methylated forms 

(CH₃Hg⁺); the most toxic form in aquatic food webs is methylmercury (MeHg), which is 

produced mainly by microbial methylation in anoxic sediments and microenvironments. 

Factors controlling Hg methylation include availability of inorganic Hg, organic matter, 

redox gradients, sulfate and iron cycling, and microbial community composition (hgcAB-

carrying microbes). MeHg strongly bioaccumulates and biomagnifies through trophic levels 

due to slow depuration and high lipid affinity; even low environmental MeHg 

concentrations lead to elevated fish tissue burdens and neurotoxic risk to predators and 

humans. Recent work highlights methylation also occurring in surprising oxic 

microenvironments and under changing climatic conditions (Rodríguez, 2023). Microbial 

methylation of Hg2+ under anaerobic conditions yields methylmercury, a potent neurotoxin 

that bioaccumulates (Lu et al., 2017; Tepper et al., 2025; Tian et al., 2021):  

 

4.1.4 Arsenic (As) 

Arsenic in aquatic systems occurs chiefly as inorganic arsenate (As(V)) under oxic 

conditions and arsenite (As(III)) under reducing conditions, with organic As species less 

abundant except in some marine organisms. Speciation controls toxicity and mobility: As(III) 

is more mobile and toxic than As(V), while adsorption to iron oxides and association with 

particulate matter removes As from the dissolved phase in oxic waters. Reductive 

dissolution of iron minerals under anoxic conditions can release adsorbed As to porewaters, 

elevating dissolved As concentrations and enabling uptake by aquatic biota. 

Biotransformations (methylation, thiolation) and trophic transfer influence exposure and 

ecological risk across freshwater and marine systems (Wang et al., 2022). The 

interconversion between arsenite (As(III)) and arsenate (As(V)) is governed by redox 

conditions (Castillejos Sepúlveda et al., 2022; Mishra et al., 2021; Su & Wilkin, 2020): 
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As(III) is more toxic, mobile, and poorly adsorbed compared to As(V). 

The geochemistry of heavy metals thus dictates their mobility and toxicity. Sediments 

and aquifer matrices act as sinks through adsorption and co-precipitation processes, but 

changing conditions (e.g., acidification, reducing environments) can remobilize metals 

(Baran & Tarnawski, 2015; Gao et al., 2023; Mali et al., 2024). 

4.2 Organic Pollutants and Transformation Mechanisms 

Organic contaminants are a broad class of pollutants, including pesticides, 

hydrocarbons, industrial solvents, dyes, and pharmaceuticals. Their behavior in aquatic 

systems is governed by solubility, partitioning between aqueous and solid phases, and 

degradation mechanisms (Bu & Ma, 2025; Mitra et al., 2024; Selwe et al., 2022). Fate 

processes include volatilization, photolysis, biodegradation (often slow), sorption to 

particulate organic carbon, and trophic transfer via lipid accumulation. Partition 

coefficients (Kow, Koc) predict bioaccumulation potential: high-Kow compounds 

concentrate in fatty tissues and biomagnify. Temperature, dissolved organic carbon, and 

sediment characteristics mediate transport and remobilization. Recent global assessments 

document continued widespread occurrence and climate-linked redistribution of many 

POPs despite regulatory controls (Aravind Kumar et al., 2022). 

4.2.1 Hydrolysis 

Many organic compounds undergo hydrolysis, where water molecules cleave chemical 

bonds. For example, organophosphate pesticides such as parathion hydrolyze into less toxic 

products: 

 

The rate depends on pH, temperature, and substituents (Liu et al., 2015; Zhang et al., 

2025). 

4.2.2 Oxidation and Photolysis 
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Hydrocarbons and chlorinated solvents undergo oxidation through natural oxidants or 

photolysis under UV light. For example: 

 

This radical chain mechanism eventually mineralizes benzene to CO₂ and H₂O, though 

intermediates like phenol and catechol can persist (Jaber et al., 2020; Xu & Wang, 2013; Yin 

et al., 2025). 

4.2.3 Microbial Degradation 

Microorganisms play a central role in organic pollutant transformation. Aerobic 

microbes use oxygenases to hydroxylate hydrocarbons, while anaerobic microbes reduce 

chlorinated solvents. For example, trichloroethene (TCE) can be reductively dechlorinated: 

 

Further stepwise dechlorination yields ethene, a non-toxic end product (Bolesch et al., 

1997; Chung et al., 2008; Hnatko et al., 2023; Wang et al., 2024). 

4.2.4 Transformation Products 

A key concern is that degradation often yields metabolites that are more mobile or 

toxic than the parent compound. For instance, atrazine degradation produces 

deethylatrazine, which is persistent in groundwater (Chen et al., 2019; Xie et al., 2021). 

Thus, the mechanistic pathways of organic pollutant degradation illustrate the balance 

between detoxification and the generation of hazardous intermediates. 

4.3 Emerging Contaminants (PFAS, Pharmaceuticals, Microplastics) 

Emerging contaminants (pharmaceuticals, personal care products, endocrine 

disruptors, PFAS/PFAS-like substances, novel industrial chemicals) are chemically diverse 

but share features: continuous release at low concentrations, varying degradability, and 

potential for subtle chronic effects. PFAS are highly persistent and mobile due to C–F bonds; 

many pharmaceuticals undergo partial biodegradation to active metabolites and can persist 
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in effluents and receiving waters. Fate is governed by compound-specific processes — 

biodegradation, hydrolysis, photolysis, sorption and volatility — and by treatment efficacy. 

Environmental detection frequently relies on high-resolution mass spectrometry; One-

Health syntheses emphasize sources (wastewater, runoff, biosolids), monitoring gaps, and 

the need for coordinated control and safer-by-design chemistry (Wang et al., 2024). 

Emerging contaminants present unique challenges due to their persistence, complex 

chemistry, and poorly understood toxicology. 

4.3.1 Per- and Polyfluoroalkyl Substances (PFAS) 

PFAS are characterized by strong C–F bonds (bond energy ~485 kJ/mol), making them 

resistant to hydrolysis, oxidation, and biodegradation. They are amphiphilic, with 

hydrophobic fluorocarbon tails and hydrophilic heads, enabling mobility in both surface 

and groundwater. 

Their degradation requires advanced oxidation or reduction: 

 

With a generalized degradation pathway as shown below 

 

Yet these processes are energy-intensive, and incomplete defluorination produces 

shorter-chain PFAS, which remain mobile and toxic (Itumoh et al., 2024; Lin et al., 2024; 

Wackett, 2024) 

4.3.2 Pharmaceuticals and Personal Care Products (PPCPs) 

Pharmaceuticals enter water systems through wastewater effluents. They exhibit 

diverse mechanisms: 

• Hydrolysis of beta-lactam antibiotics: 
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• Photodegradation of fluoroquinolones under sunlight. 

• Sorption onto sediments, which may later desorb under changing pH or ionic 

strength. 

Transformation products of pharmaceuticals often retain biological activity, such as 

antibiotic resistance selection in microbes (Goodarzi et al., 2024; Klein et al., 2021; 

Klementová et al., 2022; Löffler et al., 2023; Zhao et al., 2022). 

4.3.3 Microplastics 

Microplastics (<5 mm) act as contaminants and vectors. Their hydrophobic surfaces 

adsorb organic pollutants (hydrocarbons, PCBs) and heavy metals. Sorption occurs via 

hydrophobic interactions, van der Waals forces, and electrostatic attraction (Frost et al., 

2022; Fu et al., 2021; Liang et al., 2023; Lu et al., 2022; Menéndez-Pedriza & Jaumot, 2020): 

 

(where MP = microplastic surface) 

 

They facilitate contaminant transport across ecosystems and into organisms. In 

addition, plasticizers such as bisphenol A leach out, exerting endocrine-disrupting effects. 

These emerging pollutants exemplify how molecular stability and sorption 

mechanisms underpin persistence, mobility, and toxicity in aquatic systems. 

Table 1 Chemistry of Various Pollutants in Aquatic Systems 
Pollutant 
(class & 
typical 
compounds
) 

Main chemical 
forms/speciation 
in water 

Key chemical properties/behaviour in 
aquatic systems (brief) 

Ref. 

Mercury 
(methylmer
cury; 
inorganic 
Hg(II), Hg⁰) 

Inorganic Hg(II) 
(dissolved 
complexes), 
elemental Hg⁰ 
(gaseous), 
methylmercury 

Hg(II) forms strong complexes with sulfides 
and natural organic matter (NOM); under 
anoxic/microbial conditions, Hg(II) → MeHg 
methylates microbes. MeHg is lipophilic, 
bioaccumulates, and biomagnifies; redox 
(photochemical and microbial) and 

(Hong et 
al., 2012) 
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(MeHg⁺, 
organometallic 
cation) 

complexation control partitioning between 
water, sediment and biota. 

PFAS (per- 
and 
polyfluoroal
kyl 
substances 
— e.g., 
PFOA, PFOS) 

Dominant dissolved 
anionic forms at 
environmental pH 
(carboxylates/sulfo
nates); some neutral 
precursors occur 

Very low biodegradability, high persistence; 
strong surfactant behaviour (high surface 
activity), low sorption of short chains but 
stronger partitioning to organic matter for 
long chains; mobile in water, resist 
hydrolysis/oxidation — termed “forever 
chemicals.” 

(Fenton 
et al., 
2020) 

PCBs 
(polychlorin
ated 
biphenyl 
congeners / 
Aroclors) 

Neutral(uncharged) 
chlorinated 
biphenyl congeners; 
degree of 
chlorination (mono 
→ deca) determines 
properties 

Hydrophobic (high log K_ow for higher-
chlorinated congeners), strongly sorb to 
sediments and particulate organic carbon; 
resist biodegradation (especially highly 
chlorinated congeners); undergo slow 
dechlorination (anaerobic reductive) and 
limited oxidation (aerobic) producing lower-
chlorinated congeners/metabolites. 

(Montano 
et al., 
2022) 

Microplastic
s & 
associated 
additives 
(polystyrene
, 
polyethylen
e, PVC, 
plasticizers) 

Solid particles (nano 
→ micro → macro); 
additives 
(phthalates, 
stabilizers) may 
leach as dissolved 
organics. 

Polymer density, crystallinity and surface 
chemistry control transport (float/sink/near-
bed). Weathering (UV, mechanical) produces 
smaller particles and increases surface area; 
particles sorb hydrophobic organic 
contaminants (HOCs) and metals; additives 
can leach into water depending on partition 
coefficients and polymer-matrix diffusion. 

(Ivleva, 
2021) 

Nutrients — 
Nitrogen 
(NO₃⁻, NH₄⁺) 
& 
Phosphorus 
(PO₄³⁻) 

Dissolved inorganic: 
nitrate (NO₃⁻), 
ammonium (NH₄⁺); 
dissolved organic 
N/P; particulate 
organic forms 

Nitrate: conservative, highly mobile; 
ammonium: sorbs/adsorbs and is 
transformed (nitrification → NO₂⁻/NO₃⁻; 
denitrification → N₂ under anoxia). Phosphate 
strongly complexes with Fe/Al oxides and 
sorbs to sediments (low solubility at 
circumneutral pH when bound to Fe(III) 
oxides); redox and pH control release from 
sediments and bioavailability. 

(Howarth 
& Paerl, 
2008) 

PAHs 
(polycyclic 
aromatic 
hydrocarbon
s; e.g., 
naphthalene
, 
benzo[a]pyr
ene) 

Neutral 
hydrophobic 
organic molecules 
(multiple fused 
aromatic rings) 

Low water solubility (decreases with ring 
number), high log K_ow → strong sorption to 
particles and sediments; subject to 
photochemical oxidation, aerobic/anaerobic 
biodegradation (rates vary widely by 
compound), and formation of more polar 
oxygenated/nitrated PAH derivatives. Many 
PAHs are bioaccumulative and 
genotoxic/carcinogenic. 

(Patel et 
al., 2020) 

Antibiotics 
& 
pharmaceuti
cals (e.g., 

Mostly neutral or 
ionizable organic 
molecules (pKa-
dependent 

Ionization state (pKa) controls sorption and 
aqueous mobility; many are polar and 
moderately persistent in wastewater 
treatment effluents; undergo photolysis, 

(Kümmer
er, 2009) 
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sulfonamide
s, 
fluoroquinol
ones, 
macrolides) 

speciation), present 
as parent compound 
+ metabolites 

hydrolysis and microbial transformation to 
metabolites (some retain biological activity). 
Environmental concentrations can select for 
antibiotic-resistance genes. 

Lead (Pb) — 
inorganic 
Pb(II) and 
particulate 
Pb species 

Dissolved Pb²⁺, Pb-
organic complexes, 
adsorbed to 
particles/sediment, 
particulate 
oxide/hydroxide 
forms 

Pb solubility and speciation are strongly 
controlled by pH, redox, hardness (Ca/Mg), 
and dissolved organic matter (complexation). 
Lower pH and low DOC usually increase free 
Pb²⁺ (more bioavailable/toxic); Pb strongly 
partitions to particles and sediments and can 
be remobilized under changing geochemistry. 

(Cullen & 
McAlister, 
2017) 

 

5.0 POLLUTION MECHANISMS 

5.1 Geochemical mechanisms 

5.1.1 Adsorption  

Adsorption involves the attachment of contaminants onto mineral surfaces such as 

clays, iron and manganese oxides, and organic matter present in sediments and aquifers 

(Mary Ugwu & Anthony Igbokwe, 2019; Molina-Fernández et al., 2025; Wang et al., 2023; Y. 

Wang et al., 2020). Factors such as pH, redox potential, ionic strength, and competing ions 

influence adsorption capacity. For example, heavy metals (Pb²⁺, Cd²⁺, As³⁺) adsorb strongly 

to ferric hydroxides under oxidizing conditions, reducing their mobility. Conversely, 

changes such as acidification or reducing environments can cause desorption and 

remobilization of contaminants (Fernandes et al., 2025; Yang et al., 2025). 

 

5.1.2 Precipitation and Co-precipitation 

Contaminants may precipitate as insoluble mineral phases (e.g., PbCO₃, FePO₄) or co-

precipitate within mineral lattices. Uranium can precipitate as uranyl phosphate under 

phosphate-rich conditions, while arsenic co-precipitates with iron hydroxides, immobilizing 

these contaminants. However, these precipitates may dissolve under shifting environmental 

parameters (Almeida et al., 2020; Foster et al., 2020; Jain & Maiti, 2021). 
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5.1.3 Redox Reactions 

Redox conditions are a primary control on contaminant speciation and mobility. For 

instance, arsenic is more mobile under reducing conditions as arsenite (As³⁺), which is 

released from iron oxides, while chromium exists as mobile Cr(VI) under oxidizing 

conditions but reduces to less toxic Cr(III) in the presence of organic matter or Fe(II) 

(Brookshaw et al., 2014; Kim et al., 2019; Sun et al., 2022). These redox-driven 

transformations are critical at redox interfaces in aquatic systems. 

5.1.4 Complexation 

The formation of complexes with natural organic matter, ligands, or inorganic ions 

influences contaminant behavior. Metal-organic complexes (e.g., Cu-humate) increase 

solubility and mobility, affecting bioavailability and toxicity (Cai et al., 2024; Qin et al., 

2024). 

5.2 Biochemical mechanisms 

5.2.1 Microbial Degradation 

Microorganisms drive the biodegradation of organic contaminants through aerobic and 

anaerobic pathways. Aerobic degradation uses oxygen as the terminal electron acceptor to 

oxidize compounds such as petroleum hydrocarbons, while anaerobic degradation employs 

nitrate, sulfate, Fe(III), or CO₂ for respiration, transforming contaminants like chlorinated 

solvents via reductive dichlorination (Li, Chen, et al., 2022; Li et al., 2024; Miles et al., 2024). 

5.2.2 Biotransformation and Biosorption 

Microbial metabolism can convert contaminants into less toxic or more mobile forms. 

For example, mercury methylation by anaerobic bacteria produces methylmercury, a more 

bioaccumulative species (Pu et al., 2025). Biosorption involves binding contaminants to 

microbial biomass, temporarily immobilizing metals. 

5.2.3 Biomineralization 
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Microbes can induce mineral precipitation that sequesters contaminants. Sulfate-

reducing bacteria produce sulfide ions, precipitating metals as insoluble metal sulfides (e.g., 

PbS, ZnS), a key attenuation process in acid mine drainage and metal-contaminated aquifers 

(Dong et al., 2024; Marques & Rodrigues, 2025). 

5.3 Coupled geochemical-biochemical interactions 

Geochemical and biochemical processes often occur simultaneously and interact 

synergistically or antagonistically. For example, microbial iron reduction dissolves Fe(III) 

oxides, releasing sorbed arsenic into groundwater, while microbial sulfate reduction 

immobilizes metals as sulfides (Nghiem et al., 2023; Wu et al., 2024). This interplay results 

in spatial and temporal heterogeneity of contaminant fate in aquatic environments. 

Contaminant behavior in aquatic systems is governed by integrated geochemical and 

biochemical processes influenced by environmental conditions such as pH, redox potential, 

and microbial communities. Understanding these processes is critical for accurate 

prediction of contaminant fate and the design of remediation strategies. Future research 

should emphasize mechanistic models and in situ monitoring to capture these complex 

dynamics. 

6.0 CASE STUDIES OF DIFFERENT POLLUTANTS IN AQUATIC SYSTEMS 

Kabwe is one of the world’s most-cited modern case studies of mining-derived lead 

contamination. Historical lead–zinc mining and ore processing released large quantities of 

Pb-rich dust and tailings across the town and into nearby drainages, producing pervasive 

soil and surface-water contamination and chronic childhood lead exposure. Community 

surveys and environmental monitoring document extremely high blood lead concentrations 

in children, contamination of river sediments and floodplain soils, and ongoing exposure 

pathways via dust resuspension and locally grown foodstuffs. Recent analyses quantify the 

social and public-health costs and discuss remediation options (soil stabilization, targeted 

cleanups, and community interventions) as essential but resource-intensive measures to 

reduce long-term exposure (Yamada et al., 2023).  
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Pb²⁺ sorbs onto clay and organic matter at neutral pH can be mobilized under acidic 

mine drainage conditions: 

 

When pH drops, protonation weakens sorption, enhancing Pb²⁺ leaching. 

Cadmium pollution in Japan’s Jinzu River basin historically produced the classic itai-itai 

disease epidemic (mid-20th century), caused by Cd discharged from upstream mining into 

irrigation waters and rice paddies. Contemporary case reports show that cadmium hotspots 

persist in parts of Japan (and are detected elsewhere where former mining or industrial 

discharge occurred), producing renal tubular dysfunction, bone demineralization, anemia 

and fractures in long-exposed residents. Modern clinical follow-up, biomonitoring and a 

recent suspected itai-itai case from an Akita prefecture Cd-polluted area underscore that 

legacy cadmium in soils and sediments continues to produce human disease decades after 

emissions decline, and that sustained health surveillance plus remediation of agricultural 

soils remain priorities (Sasaki et al., 2024).  

Artisanal and small-scale gold mining (ASGM) in Amazonian Andean foothills and 

lowlands releases elemental mercury that biomagnifies as methylmercury in river food 

webs. Recent regional studies report elevated Hg in stream waters, sediments, fish and 

human biomarkers (hair/blood) from mining-impacted provinces in Ecuador and from 

indigenous communities in the Brazilian Amazon; health risk assessments detect elevated 

exposure, particularly in children and frequent fish consumers. Field monitoring and 

probabilistic risk estimates identify hotspots tied to illegal mining activity, with 

recommendations for combined strategies: source-control (anti-mining enforcement, 

mercury-free techniques), fish-consumption advisories, ecosystem monitoring and targeted 

public-health screening to address neurodevelopmental risks (Mestanza-Ramón et al., 2023; 

Passarelli et al., 2024).  

The Bengal Basin groundwater arsenic crisis remains a paradigmatic geogenic 

contamination case. Elevated inorganic arsenic (often as arsenite, As(III)) occurs in shallow 

Holocene alluvial aquifers across Bangladesh and parts of West Bengal; reductive 
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dissolution of As-bearing iron oxyhydroxides coupled with organic matter and microbial 

processes mobilizes arsenic into potable wells and irrigation water. Recent reviews and 

hydrogeochemical studies map persistent high-As zones, describe depth-dependent 

patterns and food-chain transfer (e.g., rice irrigated with As-rich groundwater), and 

evaluate mitigation options such as alternative safe wells, in-situ treatment, and irrigation 

management. Policy and remediation remain challenging because contamination is 

widespread, spatially heterogeneous, and driven by natural geochemistry as well as 

anthropogenic water-use patterns (Kanel et al., 2023; Sarkar et al., 2022).  

Groundwater arsenic contamination in Bangladesh and India illustrates the interplay of 

redox and microbial processes. Arsenate (As(V)) is reduced to arsenite (As(III)) by iron-

reducing bacteria in anoxic aquifers, releasing arsenic from Fe-oxyhydroxides: 

Reductive dissolution of Fe(III) oxyhydroxides (primary release mechanism) 

 

Reduction of arsenate to arsenite 

 

Coupled conceptual pathway  

 

This mechanism explains why tube wells show high As(III) concentrations despite 

remediation efforts (Diba et al., 2023; Sathe et al., 2021). 

Long-lived organic contaminants illustrate two global archetypes. In the Hudson River 

(USA), decades of PCB discharge produced extensive PCB-contaminated sediments, 

persistent bioaccumulation in fish, food-web transfer and ecological impacts; post-dredging 

monitoring and fish-advisories remain central components of remediation and risk 

management. Separately, the 2020 MV Wakashio grounding and fuel-oil release off 

Mauritius released complex low-sulfur fuel oil with hydrocarbon fractions (including PAHs) 

that contaminated mangroves, sediments and coastal biota; subsequent studies document 
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residual hydrocarbons, ecosystem damage, and the importance of rapid response, long-

term monitoring, and habitat restoration after oil incidents. Both cases show that organic 

pollutants demand sediment-and-biota-focused assessment plus long timelines for recovery 

(Sathe et al., 2021; Wirgin et al., 2023).  

Per- and polyfluoroalkyl substances (PFAS) are exemplary “emerging” persistent 

contaminants. The Cape Fear watershed (North Carolina) documented GenX and complex 

PFAS mixtures from fluorochemical production: downstream river and drinking-water 

intakes contained numerous PFAS congeners, prompting exposure studies, regulatory 

action and engineered source controls. Broader groundwater and national surveys show 

widespread PFAS detections (many sites and private wells), with predictive models 

highlighting likely occurrence at drinking-water depths. Case studies emphasize source 

attribution (manufacturing, firefighting foams, wastewater), challenges in detecting novel 

PFAS, the need for advanced treatment (e.g., granular activated carbon, ion exchange, 

advanced oxidation) and the policy/monitoring frameworks required to manage large 

numbers of related compounds (Pétré et al., 2022; Scarlett et al., 2021).  

PFAS contamination from firefighting foams illustrates persistence due to strong C–F 

bonds. Mechanistic studies show partial degradation via reductive defluorination under 

UV/sulfite treatment: 

 

Followed by subsequent defluorination 

 

However, the process is incomplete, generating shorter-chain PFAS with similar 

mobility (Abusallout et al., 2021; Ren et al., 2021) 

Microplastics in European rivers adsorb hydrophobic organics (PAHs, PCBs) and 

metals, transporting them downstream. Mechanistic models attribute sorption to 

hydrophobic partitioning andπ–π interactions between plastic polymers and aromatic 
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pollutants (Agboola & Benson, 2021; Prajapati et al., 2022; Tumwesigye et al., 2023; Wang 

et al., 2024). 

These case studies reveal how mechanistic understanding supports prediction and 

remediation strategies in real-world polluted sites. 

Table 2 Case studies of different pollutants in aquatic systems 
Pollutant  
(type) 

Location / 
Case 
Study 

Matrix 
Studied 

Key Findings / Summary Year Ref 

Mercury 
(methylm
ercury) 

Minamata 
Bay, 
Japan 

Fish, 
sediments, 
and human 
tissues 

Industrial discharge of methylmercury 
from acetaldehyde production caused 
widespread neurotoxicity (“Minamata 
disease”). Methylmercury 
bioaccumulates in fish and is 
biomagnified through the food web. 

1950s–
present 

(Semion
ov, 
2018) 

Crude oil 
(petroleu
m 
hydrocarb
ons) 

Deepwate
r Horizon 
Oil Spill, 
Gulf of 
Mexico 

Water 
column, 
deep-sea 
corals, 
coastal 
sediments, 
biota 

Approximately 4.9 million barrels of oil 
were released; polycyclic aromatic 
hydrocarbons (PAHs) caused chronic 
toxicity and long-term ecological 
disruption. 

2010 (Barron, 
2012) 

Polychlori
nated 
Biphenyls 
(PCBs) 

Hudson 
River, USA 

Sediments, 
fish, 
floodplain 
soils 

Discharge from GE capacitor plants led 
to one of the world’s largest PCB-
contaminated river systems. Strong 
sediment sorption and slow 
dechlorination led to decades-long 
contamination and remediation efforts. 

1940s–
present 

(Carpen
ter & 
Welfing
er‐Smit
h, 2011) 

Perfluoroo
ctanoic 
Acid 
(PFOA) 

Mid-Ohio 
Valley, 
USA 

Drinking 
water, 
serum, 
groundwat
er 

Chronic exposure from industrial 
discharges; strong persistence and 
mobility in water. Epidemiological 
evidence links exposure to 
kidney/testicular cancers and thyroid 
disorders. 

2000s–
2013 

(Vieira 
et al., 
2013) 
  

Nutrients 
(N and P) 

Chesapea
ke Bay, 
USA 

Surface 
and 
bottom 
waters 

Agricultural and wastewater nutrient 
inputs cause eutrophication, algal 
blooms, and seasonal hypoxia. 
Modelling studies link nutrient load 
reductions to improved dissolved 
oxygen levels. 

2001–
2014 

(Testa 
et al., 
2014) 

Microplast
ics 

Yangtze 
River 
Basin, 
China 

Surface 
water and 
sediments 

High abundance of polyethylene and 
polypropylene microplastics; major 
sources include wastewater and urban 
runoff. Microplastics act as vectors for 

2023–
2024 

(S. 
Wang 
et al., 
2024) 
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heavy metals and hydrophobic organic 
contaminants. 

Antibiotics 
and 
Pharmace
uticals 

Ganges 
River, 
India / 
Global 
Rivers 

Water, 
sediment, 
microbial 
communiti
es 

High concentrations of antibiotics 
(ciprofloxacin, sulfamethoxazole, etc.) 
and antibiotic resistance genes from 
wastewater inputs. Rivers serve as 
hotspots for AMR dissemination. 

2013–
2023 

(S. Li et 
al., 
2022) 

Mercury 
from 
Artisanal 
Gold 
Mining 
(ASGM) 

Madre de 
Dios, 
Peruvian 
Amazon 

Soil, water, 
and biota 

Atmospheric and waterborne mercury 
emissions from ASGM lead to 
accumulation in forest canopies and 
aquatic food webs, causing widespread 
MeHg bioaccumulation. 

2018–
2023 

(Gerson 
et al., 
2022) 

 

7.0 HUMAN HEALTH AND ECOLOGICAL IMPACTS 

Contaminants in surface and groundwater exert both direct toxicological effects and 

indirect ecological disruptions. 

7.1 Health impacts 

Lead interferes with calcium metabolism, impairing neurological function through 

substitution at calcium-binding sites: 

 

This substitution mechanism underlies neurotoxicity, impaired synaptic transmission, 

and bone accumulation (Tobalu & Enogieru, 2025). Cadmium complexes with thiol groups 

in proteins, impairing kidney function, promoting oxidative stress, and disrupting calcium 

signaling, which contributes to bone demineralization (Yan & Allen, 2021). Mercury 

methylation produces methylmercury, a neurotoxin that bioaccumulates in fish and 

biomagnifies in food webs, posing dietary risks (Jeong et al., 2024). 

Pesticides inhibit enzymes—most notably, organophosphates block 

acetylcholinesterase (AChE): 
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AChE = Acetylcholinesterase, Ser = Serine residue, AChE–Ser–OH = Active (native) 

acetylcholinesterase, AChE–Ser–O–P(=O)R = Phosphorylated (inhibited) 

acetylcholinesterase 

Organophosphates form stable covalent bonds with AChE, preventing 

neurotransmitter breakdown and causing neurotoxicity (Toropova et al., 2023). PFAS bind 

strongly to serum albumin, altering lipid transport, endocrine regulation, and liver function 

(Zhao et al., 2023). Pharmaceuticals discharged into aquatic ecosystems disrupt microbial 

communities, facilitating the spread of antibiotic resistance genes (Świacka et al., 2023). 

Microplastics not only cause physical blockage in aquatic species but also act as vectors for 

hydrophobic pollutants and metals, enhancing their bioavailability and toxicological impact 

in higher trophic levels (Parashar et al., 2023; Wu et al., 2024). 

7.2 Ecological Disruptions 

Aquatic ecosystems face multiple stressors: 

• Altered redox balance from organic pollutant degradation → hypoxia. 

• Bioaccumulation of metals in fish and benthic organisms → trophic transfer. 

• Endocrine disruption by pharmaceuticals and microplastics → reproductive 

impairments in fish and amphibians. 

Mechanistically, these effects derive from the molecular-level interactions between 

pollutants and biological systems, linking environmental chemistry with toxicology. 

7.3 Risk Assessment and Predictive Models 

Risk assessment integrates chemical data, exposure pathways, and toxicological 

thresholds to evaluate threats posed by contaminants in surface and groundwater. The 

mechanistic understanding of contaminant chemistry is essential for accurate modeling. 

7.4 Human Health Risk Assessment (HHRA) 
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Risk is quantified through hazard quotient (HQ) and carcinogenic risk (CR) values, 

based on contaminant concentration, exposure, and toxicity reference values. 

 

Where: 

C = contaminant concentration; IR = ingestion rate; EF = exposure frequency; ED = 

exposure duration 

RfD = reference dose; BW = body weight; AT = averaging time 

Mechanistically, the toxicity values (RfD, slope factor) derive from dose–response 

relationships demonstrated such risk calculations for Pb and Cd in polluted soils and their 

leachates. 

7.5 Ecological Risk Assessment (ERA) 

ERA incorporates species sensitivity distributions (SSDs), modeling contaminant 

effects across multiple taxa. For instance, LC50 values for fish exposed to methylmercury 

inform protective threshold concentrations. 

7.6 Predictive Geochemical Models 

Models such as PHREEQC simulate aqueous speciation, adsorption, and precipitation: 

• Pb²⁺ partitioning between aqueous and solid phases is predicted by equilibrium 

constants. 

• Arsenic mobility modeled through surface complexation reactions. 

Reactive transport models couple hydrodynamics with geochemical kinetics, 

predicting contaminant plumes. Mechanistic redox pathways (e.g., Fe reduction releasing As) 

are embedded in such models to improve predictions (Tufenkji et al., 2022). 
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Risk assessment frameworks, therefore, rely on the integration of contaminant 

chemistry and transport mechanisms to identify high-risk scenarios and guide remediation 

priorities. 

8.0 CONCLUSION  

The chemistry and mechanisms of contaminants in surface and groundwater define 

their environmental persistence, ecological risks, and health impacts. This review has 

highlighted the complex interplay of geochemical and biochemical processes — adsorption, 

redox transformations, hydrolysis, microbial degradation, and complexation — that govern 

contaminant fate at polluted sites. Heavy metals such as Pb, Cd, Hg, and As exhibit 

speciation-dependent toxicity, with redox and sorption dynamics controlling their mobility. 

Organic pollutants, including pesticides, hydrocarbons, and solvents, undergo hydrolysis, 

photolysis, and microbial degradation, often yielding toxic intermediates. Emerging 

contaminants such as PFAS, pharmaceuticals, and microplastics challenge existing 

remediation strategies due to their structural stability, amphiphilicity, and vector roles. 

Mechanistic insights demonstrate that environmental chemistry provides predictive 

capacity: speciation models anticipate contaminant behavior under varying geochemical 

conditions, while toxicological mechanisms explain health impacts ranging from 

neurotoxicity to endocrine disruption. Risk assessment frameworks integrate these 

mechanistic details, supporting site-specific evaluations. Case studies across Asia, Africa, 

Europe, and North America illustrate how mechanistic understanding explains observed 

contamination patterns, from arsenic mobilization in South Asia to PFAS persistence in 

military sites. 

Ultimately, the chemistry and mechanisms of contaminant behavior must remain 

central in monitoring, modeling, and remediation strategies. Bridging environmental 

chemistry with toxicology, risk science, and engineering is essential for sustainable 

management of polluted sites and protection of water resources. Future research should 

emphasize integrated mechanistic models and emerging contaminants, ensuring proactive 

rather than reactive responses to contamination challenges. 
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